Restriction of HIV-1 by rhesus TRIM5α is governed by alpha helices in the Linker2 region.

J Virol

Cellular and Molecular Biochemistry Program, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA

Published: August 2014

Unlabelled: TRIM5α proteins are a potent barrier to the cross-species transmission of retroviruses. TRIM5α proteins exhibit an ability to self-associate at many levels, ultimately leading to the formation of protein assemblies with hexagonal symmetry in vitro and cytoplasmic assemblies when expressed in cells. However, the role of these assemblies in restriction, the determinants that mediate their formation, and the organization of TRIM5α molecules within these assemblies have remained unclear. Here we show that α-helical elements within the Linker2 region of rhesus macaque TRIM5α govern the ability to form cytoplasmic assemblies in cells and restrict HIV-1 infection. Mutations that reduce α-helix formation by the Linker2 region disrupt assembly and restriction. More importantly, mutations that enhance the α-helical content of the Linker2 region, relative to the wild-type protein, also exhibit an increased ability to form cytoplasmic assemblies and restrict HIV-1 infection. Molecular modeling of the TRIM5α dimer suggests a model in which α-helical elements within the Linker2 region dock to α-helices of the coiled-coil domain, likely establishing proper orientation and spacing of protein domains necessary for assembly and restriction. Collectively, these studies provide critical insight into the determinants governing TRIM5α assembly and restriction and demonstrate that the antiviral potency of TRIM5α proteins can be significantly increased without altering the affinity of SPRY/capsid binding.

Importance: Many members of the tripartite motif (TRIM) family of proteins act as restriction factors that directly inhibit viral infection and activate innate immune signaling pathways. Another common feature of TRIM proteins is the ability to form protein assemblies in the nucleus or the cytoplasm. However, the determinants in TRIM proteins required for assembly and the degree to which assembly affects TRIM protein function have been poorly understood. Here we show that alpha helices in the Linker2 (L2) region of rhesus TRIM5α govern assembly and restriction of HIV-1 infection. Helix-disrupting mutations disrupt the assembly and restriction of HIV-1, while helix-stabilizing mutations enhance assembly and restriction relative to the wild-type protein. Circular dichroism analysis suggests that that the formation of this helical structure is supported by intermolecular interactions with the coiled-coil (CC) domain in the CCL2 dimer. These studies reveal a novel mechanism by which the antiviral activity of TRIM5α proteins can be regulated and provide detailed insight into the assembly determinants of TRIM family proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136267PMC
http://dx.doi.org/10.1128/JVI.01134-14DOI Listing

Publication Analysis

Top Keywords

linker2 region
24
assembly restriction
24
trim5α proteins
16
restriction hiv-1
12
cytoplasmic assemblies
12
ability form
12
hiv-1 infection
12
trim5α
10
restriction
9
assembly
9

Similar Publications

A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein.

Cell Res

December 2022

Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.

The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein.

View Article and Find Full Text PDF

How Epstein-Barr virus envelope glycoprotein gp350 tricks the CR2? A molecular dynamics study.

J Mol Graph Model

July 2022

Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey. Electronic address:

The connection of Epstein Barr virus (EBV) with diseases such as Burkitt Lymphoma, Hodgkin disease, multiple sclerosis, systemic lupus erythematosus and various B-cell lymphomas made EBV glycoproteins one of the most popular vaccine immunogens. As a protein being encoded by EBV, the viral membrane envelope protein gp350 is studied extensively due to its abundancy on the surface and its interaction with complementary receptor, CR2. The binding of CR2 and gp350 not only leads to the entrance of the virus to the B-cells, but also prevents CR2 and C3d protein interactions that are required for immune response.

View Article and Find Full Text PDF

Analysis of synonymous mutations established that although the primary amino acid sequence remains unchanged, alterations in transcription and translation can result in significant phenotypic consequences. We report the novel observation that a series of nonsynonymous mutations in an unconserved stretch of amino acids found in the yeast multidrug efflux pump Pdr5 increases expression, thus enhancing multidrug resistance. Cycloheximide chase experiments ruled out the possibility that the increased steady-state level of Pdr5 was caused by increased protein stability.

View Article and Find Full Text PDF

The effect of exon 7 deletion during the evolution of TRIMCyp fusion proteins on viral restriction, cytoplasmic body formation and multimerization.

PLoS One

April 2016

Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.

TRIMCyp is a fusion protein consisting of the TRIM5 gene product and retrotransposed Cyclophilin A (CypA). Two primate TRIMCyp fusion proteins with varying anti-HIV-1 activities independently evolved in owl monkeys and Old World monkeys. In addition, Old World monkey TRIMCyps lack exon7, which encodes amino acids in the Linker2 region.

View Article and Find Full Text PDF

Restriction of HIV-1 by rhesus TRIM5α is governed by alpha helices in the Linker2 region.

J Virol

August 2014

Cellular and Molecular Biochemistry Program, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA Integrative Cell Biology Program, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA

Unlabelled: TRIM5α proteins are a potent barrier to the cross-species transmission of retroviruses. TRIM5α proteins exhibit an ability to self-associate at many levels, ultimately leading to the formation of protein assemblies with hexagonal symmetry in vitro and cytoplasmic assemblies when expressed in cells. However, the role of these assemblies in restriction, the determinants that mediate their formation, and the organization of TRIM5α molecules within these assemblies have remained unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!