Enriched expression of GluD1 in higher brain regions and its involvement in parallel fiber-interneuron synapse formation in the cerebellum.

J Neurosci

Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan

Published: May 2014

Of the two members of the δ subfamily of ionotropic glutamate receptors, GluD2 is exclusively expressed at parallel fiber-Purkinje cell (PF-PC) synapses in the cerebellum and regulates their structural and functional connectivity. However, little is known to date regarding cellular and synaptic expression of GluD1 and its role in synaptic circuit formation. In the present study, we investigated this issue by producing specific and sensitive histochemical probes for GluD1 and analyzing cerebellar synaptic circuits in GluD1-knock-out mice. GluD1 was widely expressed in the adult mouse brain, with high levels in higher brain regions, including the cerebral cortex, striatum, limbic regions (hippocampus, nucleus accumbens, lateral septum, bed nucleus stria terminalis, lateral habenula, and central nucleus of the amygdala), and cerebellar cortex. In the cerebellar cortex, GluD1 mRNA was expressed at the highest level in molecular layer interneurons and its immunoreactivity was concentrated at PF synapses on interneuron somata. In GluD1-knock-out mice, the density of PF synapses on interneuron somata was significantly reduced and the size and number of interneurons were significantly diminished. Therefore, GluD1 is common to GluD2 in expression at PF synapses, but distinct from GluD2 in neuronal expression in the cerebellar cortex; that is, GluD1 in interneurons and GluD2 in PCs. Furthermore, GluD1 regulates the connectivity of PF-interneuron synapses and promotes the differentiation and/or survival of molecular layer interneurons. These results suggest that GluD1 works in concert with GluD2 for the construction of cerebellar synaptic wiring through distinct neuronal and synaptic expressions and also their shared synapse-connecting function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795243PMC
http://dx.doi.org/10.1523/JNEUROSCI.0628-14.2014DOI Listing

Publication Analysis

Top Keywords

cerebellar cortex
12
glud1
9
expression glud1
8
higher brain
8
brain regions
8
cerebellar synaptic
8
glud1-knock-out mice
8
cortex glud1
8
molecular layer
8
layer interneurons
8

Similar Publications

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Resting-State Cortico-Cerebellar Connectivity Correlates with Post-Stroke Motor Recovery - A Prospective Functional MRI Study.

Cerebellum

January 2025

Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau, ICM, Paris, F-75013, France.

Cerebellar functional and structural connectivity are likely related to motor function after stroke. Less is known about motor recovery, which is defined as a gain of function between two time points, and about the involvement of the cerebellum. Fifteen patients who were hospitalized between 2018 and 2020 for a first cerebral ischemic event with persistent upper limb deficits were assessed by resting-state functional MRI (rsfMRI) and clinical motor score measurements at 3, 9 and 15 weeks after stroke.

View Article and Find Full Text PDF

Background: Reactive astrogliosis refers to functional and morphological changes in astrocytes that occur with neuronal damage in numerous neurological conditions. PET tracers targeting monoamine oxidase B (MAO-B) are used to visualize reactive astrogliosis in the living brain. [F]SMBT-1, a MAO-B selective PET tracer, was developed by modifying the chemical structure of [F]THK5351.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Background: The association between [F]Flortaucipir (FTP) and [F]MK6240, two commonly used tau-PET tracers in Alzheimer's disease (AD), varies due to distinct binding properties and off-target signal regions. Our study aims to elucidate the biological factors influencing this association and evaluate the applicability of a common equation across different on-target regions.

Method: 113 individuals from the HEAD dataset (11 young, 58 cognitively unimpaired elderly, and 44 cognitively impaired) underwent [F]MK6240, [F]FTP and Aβ-PET scans.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Background: Differences between on- and off-target retention characteristics between [F]MK6240 and [F]Flortaucipir (FTP) complicate the harmonization across tracers. Our objective here was to separate the impact of the reference region by evaluating correlations between [F]MK6240 (MK) and [F]FTP standard uptake values (SUVs).

Method: Participants (Figure 1, n=90) received an amyloid-β (Aβ) PET scan ([C]PIB or [F]NAV4694) and two tau-PET scans: [F]MK (90-110 minutes post-injection) and [F]FTP (80-100 minutes post-injection).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!