A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Correlation of the dynamics of native human acetylcholinesterase and its inhibited huperzine A counterpart from sub-picoseconds to nanoseconds. | LitMetric

Correlation of the dynamics of native human acetylcholinesterase and its inhibited huperzine A counterpart from sub-picoseconds to nanoseconds.

J R Soc Interface

Institut de Biologie Structurale J.-P. Ebel, UMR 5075, CNRS-CEA-UJF, 38042 Grenoble Cédex 9, France Institut Laue Langevin, 38042 Grenoble Cédex 9, France Université Joseph Fourier, UFR PhITEM, 38041 Grenoble Cédex 9, France

Published: August 2014

It is a long debated question whether catalytic activities of enzymes, which lie on the millisecond timescale, are possibly already reflected in variations in atomic thermal fluctuations on the pico- to nanosecond timescale. To shed light on this puzzle, the enzyme human acetylcholinesterase in its wild-type form and complexed with the inhibitor huperzine A were investigated by various neutron scattering techniques and molecular dynamics simulations. Previous results on elastic neutron scattering at various timescales and simulations suggest that dynamical processes are not affected on average by the presence of the ligand within the considered time ranges between 10 ps and 1 ns. In the work presented here, the focus was laid on quasi-elastic (QENS) and inelastic neutron scattering (INS). These techniques give access to different kinds of individual diffusive motions and to the density of states of collective motions at the sub-picoseconds timescale. Hence, they permit going beyond the first approach of looking at mean square displacements. For both samples, the autocorrelation function was well described by a stretched-exponential function indicating a linkage between the timescales of fast and slow functional relaxation dynamics. The findings of the QENS and INS investigation are discussed in relation to the results of our earlier elastic incoherent neutron scattering and molecular dynamics simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208370PMC
http://dx.doi.org/10.1098/rsif.2014.0372DOI Listing

Publication Analysis

Top Keywords

neutron scattering
16
human acetylcholinesterase
8
molecular dynamics
8
dynamics simulations
8
correlation dynamics
4
dynamics native
4
native human
4
acetylcholinesterase inhibited
4
inhibited huperzine
4
huperzine counterpart
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!