Obesity represents a route to broad physiological dysfunction affecting major organs including male urogenital system. Hyperglycemia, hyperlipidemia, and oxidative stress associated with obesity augment the formation of reactive metabolic by-products, namely advanced glycation end products (AGEs), leading to increased tissue deposition and damage. The exogenous intake and the endogenous accumulation of AGEs contribute to metabolic and reproductive abnormalities in both women and men. The present study assessed the effects of a diet high in saturated fatty acids (SAFA) on the lipid and metabolic profile (AGE levels, oxidative stress) as well as pathogenic (AGE, receptor for AGEs [RAGE] expression, apoptosis) and morphometric parameters of male reproductive system in vivo. Effects of switching to a diet rich in monounsaturated fatty acids (MUFA) or equal in the proportion MUFA to SAFA were further investigated. SAFA-fed animals were characterized by increased serum lipid concentrations (p < .05) compared to controls, but AGEs and peroxide levels were not significantly different across the different experimental groups. Elevated AGE deposition was detected for the first time in germ cells with a higher staining intensity in animals on the SAFA diet, compared to MUFA or MUFA-SAFA-fed animals or the control samples (p = .018). In Leydig cells, AGE localization was higher in the entire cohort of high-fat-fed animals compared to controls (p < .05). High-fat-fed mice displayed enhanced apoptosis compared to controls (p < .005). Furthermore, prostatic tissue demonstrated reduction in epithelial folding, an effect which was significantly reversed after MUFA diet administration. Our findings provide the basis for further investigation of AGE-RAGE axis in testicular and prostatic disturbances associated with diet-induced obesity. Simple dietetic intervention has beneficial effects on metabolic dysfunction of reproductive system before overt manifestations, indicating glycation as a promising therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1535370214531899DOI Listing

Publication Analysis

Top Keywords

advanced glycation
12
reproductive system
8
oxidative stress
8
fatty acids
8
impact diet-induced
4
diet-induced obesity
4
obesity male
4
male mouse
4
mouse reproductive
4
system role
4

Similar Publications

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Objective: He Shi Yu Lin Formula (HSYLF) is a clinically proven prescription for treating premature ovarian insufficiency (POI), and has shown a good curative effect. However, its molecular mechanisms are unclear. This study aimed to investigate the molecular mechanisms of HSYLF and clarify how network pharmacology analysis guides the design of animal experiments, including the selection of effective treatment doses and key targets, to ensure the relevance of the experimental results.

View Article and Find Full Text PDF

Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic disease associated with numerous complications, including cardiovascular diseases, nephropathy, and neuropathy. Sodium-glucose cotransporter 2 (SGLT-2) inhibitors, a class of novel antidiabetic agents, have demonstrated promising therapeutic effects beyond glycemic control, with potential benefits extending to the cardiovascular and renal systems. Recently, research has increasingly focused on exploring the potential role of SGLT-2 inhibitors in preventing dementia.

View Article and Find Full Text PDF

Temporal RAGE Over-Expression Disrupts Lung Development by Modulating Apoptotic Signaling.

Curr Issues Mol Biol

December 2024

Department of Cell Biology and Physiology, Brigham Young University, 3054 Life Sciences Building, Provo, UT 84602, USA.

Receptors for advanced glycation end products (RAGE) are multiligand cell surface receptors found most abundantly in lung tissue. This study sought to evaluate the role of RAGE in lung development by using a transgenic (TG) mouse model that spatially and temporally controlled RAGE overexpression. Histological imaging revealed that RAGE upregulation from embryonic day (E) 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!