Sorafenib, an oral multi-kinase inhibitor, has been approved for treatment of advanced renal-cell and hepatocellular carcinoma (HCC). However, 20% of HCC patients taking sorafenib are forced to withdraw due to adverse effects within one month after administration. Orally administered sorafenib is oxidatively metabolized, predominantly by cytochrome P450 3A4 (CYP3A4), in small-intestinal mucosa or liver. We aimed to characterize the CYP3A4-mediated metabolism of sorafenib in HCC patients and explore the contribution of the major metabolite sorafenib N-oxide to adverse effects and therapeutic efficacy. We have therefore developed a method for quantitative determination of sorafenib and its N-oxide in the present study. To optimize the preanalytical procedure, we initially ascertained the solubility of the analytes. Because they are lipophilic, solvents containing more than 40% acetonitrile were required for efficient recovery. The pretreatment procedure that we ultimately developed consists of acetonitrile precipitation, followed by extraction using octadecyl silyl-silica gel to eliminate water-soluble and hydrophilic components of serum. Application of this procedure before HPLC enabled accurate and reproducible quantitation of analytes in a linear range from 0.03 to 30 μg/mL. After characterizing the peaks in the HPLC-ultraviolet chromatogram obtained from a medicated patient by LC-tandem mass spectrometry, we applied this method to HCC patients taking sorafenib, showing large inter-individual differences in the pharmacokinetic profile. In conclusion, our assay system should be useful for follow-up of patients taking sorafenib and for exploring the association between the pharmacokinetics of sorafenib and its N-oxide and the adverse effects or therapeutic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.233.103DOI Listing

Publication Analysis

Top Keywords

sorafenib n-oxide
16
patients sorafenib
16
hcc patients
12
adverse effects
12
sorafenib
11
n-oxide adverse
8
effects therapeutic
8
therapeutic efficacy
8
patients
5
quantitative hplc-uv
4

Similar Publications

BRAF-activated ARSI suppressed EREG-mediated ferroptosis to promote BRAF (mutant) papillary thyroid carcinoma progression and sorafenib resistance.

Int J Biol Sci

January 2025

Department of Thyroid and Hernia Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou City, Fujian Province 350001, China.

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAF mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAF PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients.

View Article and Find Full Text PDF

Background: Sorafenib is a first-line treatment for hepatocellular carcinoma (HCC); however, acquired resistance often results in a poor prognosis, indicating a need for more effective therapies. Sorafenib induces cell death through an iron-dependent mechanism known as ferroptosis, which is closely associated with the onset and progression of HCC.

Methods: This study investigated the role of ACSL3 in sorafenib resistance and ferroptosis in HCC.

View Article and Find Full Text PDF

PEROXYNITRITE IS INVOLVED IN THE MITOCHONDRIAL DYSFUNCTION INDUCED BY SORAFENIB IN LIVER CANCER CELLS.

Free Radic Biol Med

December 2024

Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain. Electronic address:

Background: Sorafenib is a tyrosine kinase inhibitor (TKI) that belongs to the landscape of treatments for advanced stages of hepatocellular carcinoma (HCC). The induction of cell death and cell cycle arrest by Sorafenib has been associated with mitochondrial dysfunction in liver cancer cells. Our research aim was to decipher underlying oxidative and nitrosative stress induced by Sorafenib leading to mitochondrial dysfunction in liver cancer cells.

View Article and Find Full Text PDF

Sorafenib promotes Treg cell differentiation to compromise its efficacy via VEGFR/AKT/Foxo1 signaling in hepatocellular carcinoma.

Cell Mol Gastroenterol Hepatol

December 2024

Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310020, China.

Unlabelled: Our study revealed that sorafenib (Sora) induced the formation of an immunosuppressive tumor microenvironment in hepatocellular carcinoma (HCC) by promoting the differentiation of regulatory T (Treg) cells through VEGFR/AKT/Foxo1 signaling, leading to compromised Sora efficacy. Importantly, combination treatment with an anti-CD25 antibody or the Foxo1 inhibitor AS1842856 inhibited Treg cell differentiation and increased the therapeutic efficacy of Sora in HCC.

Background & Aims: Sora is the first-line drug for advanced HCC.

View Article and Find Full Text PDF

A real-world pharmacovigilance study of Sorafenib based on the FDA Adverse Event Reporting System.

Front Pharmacol

December 2024

Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Aims: The primary objective of this study was to closely monitor and identify adverse events (AEs) associated with Sorafenib, a pharmacological therapeutic agent used to treat hepatocellular carcinoma, renal cell carcinoma, and thyroid cancer. The ultimate goal was to optimize patient safety and provide evidence-based guidance for the appropriate use of this drug.

Methods: Reports from the FDA Adverse Event Reporting System (FAERS) database were comprehensively collected and analyzed, covering the first quarter of 2004 to the first quarter of 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!