Transient receptor potential melastatin 7 (TRPM7), a Ca(2+)-nonselective cation channel, plays a key role in the pathophysiological response of multiple cell types. However, the role of TRPM7 channels in hydrogen peroxide (H2O2)-induced cardiac fibrosis remains unclear. This study aimed to explore whether TRPM7 channels are involved in H2O2-induced cardiac fibrosis and the underlying mechanisms. Our results showed that 2-aminoethoxydiphenylborate (2-APB), which is commonly used to block TRPM7 channels, inhibited H2O2-induced cardiac fibrosis via attenuating the overexpression of important fibrogenic biomarkers and growth factors in cardiac fibroblasts, including collagen type I (Col I), fibronectin (FN), smooth muscle α-actin (α-SMA), connective tissue growth factor (CTGF), and transforming growth factor-β1 (TGF-β1). In addition, 2-APB also decreased H2O2-mediated elevation of the concentration of intracellular Ca(2+) ([Ca(2+)]i). Meanwhile, silencing TRPM7 channels by shRNA interference also impaired the increased [Ca(2+)]i and upregulation of Col I, FN, α-SMA, CTGF, and TGF-β1 induced by H2O2. Furthermore, we found that H2O2-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2) decreased in TRPM7-shRNA cells and Ca(2+)-free culture media. These results demonstrated that TRPM7 channels contributed to H2O2-induced cardiac fibrosis and suggested that this contribution may be through mediating Ca(2+) influx and phosphorylation of ERK1/2.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.13224fpDOI Listing

Publication Analysis

Top Keywords

h2o2-induced cardiac
20
cardiac fibrosis
20
trpm7 channels
20
transient receptor
8
receptor potential
8
potential melastatin
8
melastatin trpm7
8
mediating ca2+
8
ca2+ influx
8
extracellular signal-regulated
8

Similar Publications

Coronary heart disease (CHD) is one of the most commonly seen cardiovascular conditions across the globe. Junctional cadherin 5 associated (JCAD) protein is found in the intercellular junctions of endothelial cells and linked to cardiovascular diseases. Nonetheless, the influence of JCAD on cardiomyocyte injury caused by CHD is unclear.

View Article and Find Full Text PDF

Downregulation of MLF1 safeguards cardiomyocytes against senescence-associated chromatin opening.

Nucleic Acids Res

December 2024

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

Aging-associated cardiac hypertrophy (AACH) increases susceptibility to heart failure in the elderly. Chromatin remodeling contributes to the gene reprogramming in AACH; however, the intrinsic regulations remain elusive. We performed a transcriptome analysis for AACH in comparison with pressure-overload-induced pathological cardiac hypertrophy in mice and identified myeloid leukemia factor 1 (MLF1) as an aging-sensitive factor whose expression was reduced during aging but could be reversed by anti-aging administrations.

View Article and Find Full Text PDF

The Guanxin Shutong capsule (GXST), a traditional Chinese medicine, is commonly used for treating cardiovascular disease, it has shown efficacy in improving symptoms and enhancing the quality of life for patients with heart failure (HF). However, the specific mechanism of action of GXST in HF remains unclear. In this study, we employed a comprehensive approach combining network pharmacology, molecular dynamics (MD) simulations, and in vitro validations to investigate the potential targets and molecular mechanisms of GXST against HF.

View Article and Find Full Text PDF

Myocardial ischemia-reperfusion (I/R) injury exacerbates cellular damage upon restoring blood flow to ischemic cardiac tissue, causing oxidative stress, inflammation, and apoptosis. This study investigates Nicotinamide Riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD), for its cardioprotective effects. Administering NR to mice before I/R injury and evaluating heart function via echocardiography showed that NR significantly improved heart function, increased left ventricular ejection fraction (LVEF) and fractional shortening (FS), and reduced left ventricular end-diastolic (LVDd) and end-systolic diameters (LVSd).

View Article and Find Full Text PDF

Background: Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!