Near-infrared luminescent PMMA-supported metallopolymers based on Zn-Nd Schiff-base complexes.

Inorg Chem

School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Medical Material, Northwest University, Xi'an 710069, Shaanxi China.

Published: June 2014

On the basis of self-assembly from the divinylphenyl-modified Salen-type Schiff-base ligands H2L(1) (N,N'-bis(5-(3'-vinylphenyl)-3-methoxy-salicylidene)ethylene-1,2-diamine) or H2L(2) (N,N'-bis(5-(3'-vinylphenyl)-3-methoxy-salicylidene)phenylene-1,2-diamine) with Zn(OAc)2·2H2O and Ln(NO3)3·6H2O in the presence of pyridine (Py), two series of heterobinuclear Zn-Ln complexes [Zn(L(n))(Py)Ln(NO3)3] (n = 1, Ln = La, 1; Ln = Nd, 2; or Ln = Gd, 3 and n = 2, Ln = La, 4; Ln = Nd, 5; or Ln = Gd, 6) are obtained, respectively. Further, through the physical doping and the controlled copolymerization with methyl methacrylate (MMA), two kinds of PMMA-supported hybrid materials, doped PMMA/[Zn(L(n))(Py)Ln(NO3)3] and Wolf Type II Zn(2+)-Ln(3+)-containing metallopolymers Poly(MMA-co-[Zn(L(n))(Py)Ln(NO3)3]), are obtained, respectively. The result of their solid photophysical properties shows the strong and characteristic near-infrared (NIR) luminescent Nd(3+)-centered emissions for both PMMA/[Zn(L(n))(Py)Nd(NO3)3] and Poly(MMA-co-[Zn(L(n))(Py)Nd(NO3)3]), where ethylene-linked hybrid materials endow relatively higher intrinsic quantum yields due to the sensitization from both (1)LC and (3)LC of the chromorphore than those from only (1)LC in phenylene-linked hybrid materials, and the concentration self-quenching of Nd(3+)-based NIR luminescence could be effectively prevented for the copolymerized hybrid materials in comparison with the doped hybrid materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic500132nDOI Listing

Publication Analysis

Top Keywords

hybrid materials
20
hybrid
5
materials
5
near-infrared luminescent
4
luminescent pmma-supported
4
pmma-supported metallopolymers
4
metallopolymers based
4
based zn-nd
4
zn-nd schiff-base
4
schiff-base complexes
4

Similar Publications

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Mechanistic understanding of pH as a driving force in cancer therapeutics.

J Mater Chem B

January 2025

Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.

The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Unlabelled: The hybrid closed-loop (HCL) system, Medtronic MiniMed 770G, has been available for use by Japanese individuals with type 1 diabetes mellitus since 2021. The aim of this study was to evaluate the effect of its use on glycemic variability and quality of life (QOL) in this population. This multicenter, open-label, prospective observational study included 14 Japanese individuals with type 1 diabetes mellitus treated with MiniMed 640G.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!