Whole cell cryo-electron tomography suggests mitochondria divide by budding.

Microsc Microanal

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School,240 Longwood Avenue,Boston,MA 02115,USA.

Published: August 2014

Eukaryotes rely on mitochondrial division to guarantee that each new generation of cells acquires an adequate number of mitochondria. Mitochondrial division has long been thought to occur by binary fission and, more recently, evidence has supported the idea that binary fission is mediated by dynamin-related protein (Drp1) and the endoplasmic reticulum. However, studies to date have depended on fluorescence microscopy and conventional electron microscopy. Here, we utilize whole cell cryo-electron tomography to visualize mitochondrial division in frozen hydrated intact HeLa cells. We observe a large number of relatively small mitochondria protruding from and connected to large mitochondria or mitochondrial networks. Therefore, this study provides evidence that mitochondria divide by budding.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927614001317DOI Listing

Publication Analysis

Top Keywords

mitochondrial division
12
cell cryo-electron
8
cryo-electron tomography
8
mitochondria divide
8
divide budding
8
mitochondria mitochondrial
8
binary fission
8
mitochondria
5
tomography suggests
4
suggests mitochondria
4

Similar Publications

Activated/Cycling Treg Deficiency and Mitochondrial Alterations in Immunological Non-Responders to Antiretroviral Therapy.

Front Biosci (Landmark Ed)

December 2024

Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

Background: Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4 T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs).

View Article and Find Full Text PDF

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Lipotoxicity-induced upregulation of FIS1 exacerbates mitochondrial fragmentation and promotes NLRP3-dependent pyroptosis in diabetic cardiomyopathy.

Free Radic Biol Med

December 2024

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China. Electronic address:

Background: Lipotoxicity is a significant factor in the pathogenesis of diabetic cardiomyopathy (DbCM), a condition characterized by mitochondrial fragmentation and pyroptosis. Mitochondrial fission protein 1 (FIS1) plays a role in mitochondrial fission by anchoring dynamin-related protein 1 (DRP1). However, the specific contribution of FIS1 to DbCM remains unclear.

View Article and Find Full Text PDF

Perfluorodecanoic acid (PFDA) increases oxidative stress through inhibition of mitochondrial β-oxidation.

Environ Pollut

December 2024

Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.

PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!