Sexual dimorphism can result from sexual or ecological selective pressures, but the importance of alternative reproductive roles and trait compensation in generating phenotypic differences between the sexes is poorly understood. We evaluated morphological and behavioral sexual dimorphism in striped bark scorpions (Centruroides vittatus). We propose that reproductive roles have driven sexually dimorphic body mass in this species which produces sex differences in locomotor performance. Poor locomotor performance in the females (due to the burden of being gravid) favors compensatory aggression as part of an alternative defensive strategy, while male morphology is coadapted to support a sprinting-based defensive strategy. We tested the effects of sex and morphology on stinging and sprinting performance and characterized overall differences between the sexes in aggressiveness towards simulated threats. Greater body mass was associated with higher sting rates and slower sprinting within sexes, which explained the greater aggression of females (the heavier sex) and, along with longer legs in males, the improved sprint performance in males. These findings suggest females are aggressive to compensate for locomotor costs of reproduction while males possess longer legs to enhance sprinting for predator evasion and mate finding. Sexual dimorphism in the metasoma ("tail") was unrelated to stinging and sprinting performance and may best be explained by sexual selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037197 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097648 | PLOS |
Nutrients
March 2025
College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea.
Chronic stress disrupts neurochemical balance, triggers inflammation, and compromises neuronal integrity, contributing to the development of stress-related disorders. This study aimed to evaluate the preventative effects of Berk (TF) enzymatic extracts on chronic restraint stress (CRS)-induced behavioral, neurochemical, and inflammatory dysfunctions in mice. Male C57BL/6N mice were administered TF at doses of 50 mg/kg and 100 mg/kg daily via oral gavage for 21 days during CRS exposure.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
There is great interest in using genetically tractable organisms such as to gain insights into the regulation and function of sleep. However, sleep phenotyping in has largely relied on simple measures of locomotor inactivity. Here, we present FlyVISTA, a machine learning platform to perform deep phenotyping of sleep in flies.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
March 2025
Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
This study examined the antioxidant, anti-inflammatory, and neuroprotective effects of melatonin (MEL) against acrylamide (ACR)-induced neurotoxicity in Sprague-Dawley rats. The experimental groups included control, ACR, MEL10+ACR, MEL20+ACR, and MEL20. MEL at doses of 10 and 20 mg/kg, and ACR at 50 mg/kg, were administered intraperitoneally for 14 days.
View Article and Find Full Text PDFBrain Behav
March 2025
Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Objective: Despite extensive, cross-disciplinary research revealing a relationship between early life stress (ELS) and an increased risk for neuropsychiatric disorders, the underlying processes mediating this relationship are not fully understood. Further, the majority of preclinical studies investigating this relationship have not taken sex differences into consideration. A growing body of work suggests that microglia, resident immune cells of the brain, are impacted by ELS and contribute to some of the maladaptive behavioral phenotypes in adulthood.
View Article and Find Full Text PDFNeurotoxicology
March 2025
Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA. Electronic address:
Chronic exposure to elevated levels of manganese (Mn) induces manganism, a neurological disorder, exhibiting symptoms resembling Parkinson's disease (PD). Mn is well known to dysregulate dopaminergic (DAergic) function, and the repressor element-1 silencing transcription factor (REST) induces protection against Mn-induced toxicity and several neurodegenerative diseases, including PD and Alzheimer's disease. In the present study, we investigated if DAergic REST plays a role in Mn-induced neurotoxicity by assessing behavioral deficits and alteration of neurotransmitter levels using high-performance liquid chromatography with electrochemical detector (HPLC-ECD), and microdialysis between DAergic-specific REST-deleted (REST cKO) mice and REST loxP mice as a wild-type (WT) control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!