Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.

Environ Sci Technol

Department of Civil & Environmental Engineering, ‡Department of Chemistry, and §Department of Biochemistry & Cell Biology, Rice University, Houston, Texas 77005, United States.

Published: June 2014

Manipulation of the organic coatings of nanoparticles such as quantum dots (QDs) to enhance specific applications may also affect their interaction and uptake by different organisms. In this study, poplar trees (Populus deltoides × nigra) were exposed hydroponically to 50-nM CdSe/CdZnS QDs coated with cationic polyethylenimine (PEI) (35.3 ± 6.6 nm) or poly(ethylene glycol) of anionic poly(acrylic acid) (PAA-EG) (19.5 ± 7.2 nm) to discern how coating charge affects nanoparticle uptake, translocation, and transformation within woody plants. Uptake of cationic PEI-QDs was 10 times faster despite their larger hydrodynamic size and higher extent of aggregation (17 times larger than PAA-EG-QDs after 11-day incubation in the hydroponic medium), possibly due to electrostatic attraction to the negatively charged root cell wall. QDs cores aggregated upon root uptake, and their translocation to poplar shoots (negligible for PAA-EG-QDs and 0.7 ng Cd/mg stem for PEI-QDs) was likely limited by the endodermis. After 2-day exposure, PEI and PAA-EG coatings were likely degraded from the internalized QDs inside the plant, leading to the aggregation of the metallic cores and a "red-shift" of fluorescence. The fluorescence of PEI-QD aggregates was stable inside the roots through the 11-day exposure period. In contrast, the PAA-EG-QD aggregates lost fluorescence inside the plant after 11 days probably due to destabilization of the coating, even though these QDs were stable in the hydroponic solution. Overall, these results highlight the importance of coating properties in the rate and extent to which nanoparticles are assimilated by plants and potentially introduced into food webs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es501425rDOI Listing

Publication Analysis

Top Keywords

uptake translocation
12
translocation transformation
8
quantum dots
8
populus deltoides
8
deltoides nigra
8
inside plant
8
uptake
5
qds
5
transformation quantum
4
dots cationic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!