Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fenton's reagent and sawdust were used on the dewaterability of the raw oily sludge in this study. The result shows that the combination of the two treatment processes is favorable, although the application of Fenton's reagent only is not so good. The capillary suction time (CST) and specific resistance to filtration (SRF) were used to evaluate the effect of dewaterability of the raw oily sludge, and the CST and SRF values are reduced from 1,760 s and 13.8 × 10(12) m/kg to 185 s and 1.5 × 10(12) m/kg, respectively. The dry matter contents of sludge cakes and properties of the supernatant all gained when using only the Fenton's reagent and when using the combined treatment with Fenton's reagent and sawdust respectively were investigated. The results indicate that the oily sludge is more suitable for further treatment after combined process with Fenton's reagent and sawdust.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-3070-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!