J Phys Chem A
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel.
Published: June 2014
Steady-state and time-resolved optical techniques were employed to study the photoprotolytic mechanism of a general photoacid. Previously, a general scheme was suggested that includes an intermediate product that, up until now, had not been clearly observed experimentally. For our study, we used quinone cyanine 7 (QCy7) and QCy9, the strongest photoacids synthesized so far, to look for the missing intermediate product of an excited-state proton transfer to the solvent. Low-temperature steady-state emission spectra of both QCy7 and QCy9 clearly show an emission band at T < 165 K in H2O ice that could be assigned to ion-pair RO(-)*···H3O(+), the missing intermediate. Room-temperature femtosecond pump-probe spectroscopy transient spectra at short times (t < 4 ps) also shows the existence of transient absorption and emission bands that we assigned to the RO(-)*···H3O(+) ion pair. The intermediate dissociates on a time scale of 1 ps and about 1.5 ps in H2O and D2O samples, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp5002435 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.