Using modern methods of molecular docking, quantum chemistry and quantum theory of atoms in molecules the interaction of anticancer drug ThioTEPA with isolated nucleotide bases and deoxyribonucleosidemonophosphates of DNA has been studied. Physical properties and some trends of binding have been established for the complexes of "nucleotide base + ThioTEPA" and "deoxyribonucleosidemonophosphate + ThioTEPA" types. It has been shown that strong hydrogen bonds of NH...N type are the key factor responsible for high selectivity of binding of ThioTEPA to the guanine-containing units of the DNA.

Download full-text PDF

Source
http://dx.doi.org/10.15407/ubj86.02.050DOI Listing

Publication Analysis

Top Keywords

nucleotide bases
8
anticancer drug
8
drug thiotepa
8
molecular docking
8
[interaction dna
4
dna nucleotide
4
bases anticancer
4
thiotepa molecular
4
docking quantum-mechanical
4
quantum-mechanical analysis]
4

Similar Publications

Identification and analysis of repetitive elements (motifs) in DNA, RNA, and protein macromolecules is an important step in studying structure and functions of these biopolymers. Functional role of NA-BSE (non-adjacent base-stacking element, a widespread tertiary structure motif in various RNAs) in RNA-RNA interactions at various stages of the ribosome function during translation has been investigated in this work. Motifs of this type have been described to date that are reversibly formed during mRNA decoding, moving of the ribosome subunits relative to each other, and moving mRNA and tRNA along the ribosome during translocation.

View Article and Find Full Text PDF

ADAR Therapeutics as a New Tool for Personalized Medicine.

Genes (Basel)

January 2025

Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.

In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity.

View Article and Find Full Text PDF

Taming large-scale genomic analyses via sparsified genomics.

Nat Commun

January 2025

Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland.

Searching for similar genomic sequences is an essential and fundamental step in biomedical research. State-of-the-art computational methods performing such comparisons fail to cope with the exponential growth of genomic sequencing data. We introduce the concept of sparsified genomics where we systematically exclude a large number of bases from genomic sequences and enable faster and memory-efficient processing of the sparsified, shorter genomic sequences, while providing comparable accuracy to processing non-sparsified sequences.

View Article and Find Full Text PDF

Tulip mild mottle mosaic disease, caused by tulip mild mottle mosaic virus (TMMMV, species Ophiovirus tulipae), was first reported in Japan in 1979. TMMMV has a negative-sense ssRNA genome and is closely related to ophioviruses such as Mirafiori lettuce big vein virus (MLBVV, Ophiovirus mirafioriense). However, its complete nucleotide sequence has not yet been reported.

View Article and Find Full Text PDF

Root system architecture (RSA) plays an important role in plant adaptation to drought stress. However, the genetic basis of RSA in sorghum has not been adequately elucidated. This study aimed to investigate the genetic bases of RSA traits through genome-wide association studies (GWAS) and determine genomic prediction (GP) accuracy in sorghum landraces at the seedling stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!