Single crystals of several ternary alkali uranium fluorides, LiUF5, KU2F9, K7U6F31, RbUF5, RbU2F9, and RbU3F13, have been obtained in a mild hydrothermal process using UO2(CH3CO2)2(H2O)2 as the uranium source. Their crystal structures were determined by single crystal X-ray diffraction. The uranium in the starting reagent was successfully reduced from U(6+) to U(4+) in a dilute hydrofluoric acid environment, aided by the presence of a copper salt. All materials exhibit highly complex crystal structures that range from two-dimensional to three-dimensional. The U(4+) cations are found in high (UF8 and UF9) coordination environments. The magnetic susceptibility measurements yielded effective magnetic moments of 3.01-3.83 μB for the U(4+) cations. The temperature dependent magnetic susceptibility measurements confirmed that the U(4+) cation exhibits a nonmagnetic singlet ground state at low temperatures. No long-range magnetic order was observed for any of the above compositions down to 2 K. Optical and thermal behaviors of the fluorides were also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic5008507 | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Silicon is utilized as a functional material in various fields such as semiconductors, bio-medicine, and solar energy. To prepare Si materials, researchers have proposed methods including carbothermal reduction, hydrothermal reduction, and magnesiothermal reduction, but these strategies often involve high temperatures or unwanted by-products. Herein, we present a low-temperature ionic liquid reduction system to prepare Si nanospheres based on 1-butyl-3-methylimidazolium chloride-aluminum chloride ([Bmim]Cl-AlCl).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China. Electronic address:
Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
Direct regeneration, which involves replenishing lithium in spent cathode materials, is emerging as a promising recycling technique for spent lithium iron phosphate (s-LFP) cathodes. Unlike solid-state regeneration, the aqueous relithiation method consumes less energy, ensures even lithium replenishment, and significantly recovers the capacity of s-LFP. However, liquid-phase lithium replenishment formulations are generally less standardized.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
The utilization of nonlinear optical (NLO) crystals plays a crucial role in the contemporary laser industry, and the advancement of novel NLO-active units is essential for the exploration of NLO materials. Two novel organic-inorganic hybrid iodates, designated as (CNH)MoO(IO)·3HO () and (CNIH)MoO(IO)·4HO () were synthesized via mild hydrothermal methods, exhibiting band gaps of 3.75 and 3.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland.
The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!