A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The study of secondary effects in vibrational and hydrogen bonding properties of 2- and 3-ethynylpyridine and ethynylbenzene by IR spectroscopy. | LitMetric

The study of secondary effects in vibrational and hydrogen bonding properties of 2- and 3-ethynylpyridine and ethynylbenzene by IR spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10001 Zagreb, Croatia. Electronic address:

Published: November 2014

Weak hydrogen bonds formed by 2- and 3-ethynylpyridine and ethynylbenzene with trimethylphosphate and phenol were characterized by IR spectroscopy and DFT calculations (B3LYP/6-311++G(d, p)). The structure and stability of ethynylpyridines and ethynylbenzene in the gas phase and in the complexes with trimethylphosphate and phenol are discussed in terms of geometry and electronic charge redistribution. Anharmonic effects are taken into account when calculating vibrational wavenumbers of these systems what lead to partial improvement of agreement with experiment. The changes in the electronic charge distribution are behind the frequency shifts of the CC stretching in opposite direction depending on the role the ethyne molecule has in a hydrogen bonded complex (Δν̃=+9 cm(-1) in trimethylphosphate complexes, Δν̃=-3 cm(-1) in phenol complexes). The association constants were determined by keeping the concentrations of proton donors approximately constant and low enough to avoid self-association and the proton acceptors were present in excess. The values obtained for the association constants and enthalpy changes in C2Cl4 (for trimethylphosphate complexes K≈0.5-1.0 mol(-1)dm(3) and -ΔrH≈6-8 kJ mol(-1), for phenol complexes K≈20-40 mol(-1) dm3-ΔrH≈17-22 kJ mol(-1)) are in good agreement with literature data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2014.04.166DOI Listing

Publication Analysis

Top Keywords

3-ethynylpyridine ethynylbenzene
8
trimethylphosphate phenol
8
electronic charge
8
trimethylphosphate complexes
8
phenol complexes
8
association constants
8
complexes
5
study secondary
4
secondary effects
4
effects vibrational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!