Human marrow stromal cells downsize the stem cell fraction of lung cancers by fibroblast growth factor 10.

Mol Cell Biol

Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan Department of Respiratory Medicine, Tohoku University Hospital, Sendai, Japan.

Published: August 2014

The functional interplay between cancer cells and marrow stromal cells (MSCs) has attracted a great deal of interest due to the MSC tropism for tumors but remains to be fully elucidated. In this study, we investigated human MSC-secreted paracrine factors that appear to have critical functions in cancer stem cell subpopulations. We show that MSC-conditioned medium reduced the cancer stem cell-enriched subpopulation, which was detected as a side population and quiescent (G0) cell cycle fraction in human lung cancer cells by virtue of fibroblast growth factor 10 (FGF10). This reduction of the stem cell-enriched fraction was also observed in lung cancer cells supplemented with recombinant human FGF10 protein. Moreover, supplementary FGF10 attenuated the expression of stemness genes encoding transcription factors, such as OCT3/4 and SOX2, and crippled the self-renewal capacity of lung cancer cells, as evidenced by the impaired formation of floating spheres in the suspension culture. We finally confirmed the therapeutic potential of the FGF10 treatment, which rendered lung cancer cells prone to a chemotherapeutic agent, probably due to the reduced cancer stem cell subpopulation. Collectively, these results add further clarification to the molecular mechanisms underlying MSC-mediated cancer cell kinetics, facilitating the development of future therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4135576PMC
http://dx.doi.org/10.1128/MCB.00871-13DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
lung cancer
16
stem cell
12
cancer stem
12
cancer
9
marrow stromal
8
stromal cells
8
fibroblast growth
8
growth factor
8
reduced cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!