Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic and multi-functional type I cell surface membrane protein, which is known to be phosphorylated by the activated platelet-derived growth factor receptor (PDGFR). The tyrosine kinase inhibitor imatinib, which inhibits PDGFR and c-Abl, and which has previously been reported to counteract β-cell death and diabetes, has been suggested to reduce atherosclerosis by inhibiting PDGFR-induced LRP1 phosphorylation. The aim of the present study was to study LRP1 function in β-cells and to what extent imatinib modulates LRP1 activity. LRP1 and c-Abl gene knockdown was performed by RNAi using rat INS-1 832/13 and human EndoC1-βH1 cells. LRP1 was also antagonized by treatment with the antagonist low-density lipoprotein receptor-related protein associated protein 1 (LRPAP1). We have used PDGF-BB, a PDGFR agonist, and apolipoprotein E (ApoE), an LRP1 agonist, to stimulate the activities of PDGFR and LRP1 respectively. Knockdown or inhibition of LRP1 resulted in increased hydrogen peroxide (H2O2)- or cytokine-induced cell death, and glucose-induced insulin release was lowered in LRP1-silenced cells. These results indicate that LRP1 function is necessary for β-cell function and that LRP1 is adversely affected by challenges to β-cell health. PDGF-BB, or the combination of PDGF-BB+ApoE, induced phosphorylation of extracellular-signal-regulated kinase (ERK), Akt and LRP1. LRP1 silencing blocked this event. Imatinib blocked phosphorylation of LRP1 by PDGFR activation but induced phosphorylation of ERK. LRP1 silencing blocked imatinib-induced phosphorylation of ERK. Sunitinib also blocked LRP1 phosphorylation in response to PDGF-BB and induced phosphorylation of ERK, but this latter event was not affected by LRP1 knockdown. siRNA-mediated knockdown of the imatinib target c-Abl resulted in an increased ERK phosphorylation at basal conditions, with no further increase in response to imatinib. Imatinib-induced cell survival of tunicamycin-treated cells was partially mediated by ERK activation. We have concluded that imatinib promotes LRP1-dependent ERK activation, possibly via inhibition of c-Abl, and that this could contribute to the pro-survival effects of imatinib on β-cells.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20130560DOI Listing

Publication Analysis

Top Keywords

lrp1
17
low-density lipoprotein
12
lipoprotein receptor-related
12
receptor-related protein
12
induced phosphorylation
12
phosphorylation erk
12
phosphorylation
9
imatinib
8
erk
8
erk phosphorylation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!