Autophagy is a well-conserved catabolic process, involving the degradation of a cell's own components through the lysosomal/vacuolar machinery. Autophagy is typically induced by nutrient starvation and has a role in nutrient recycling, cellular differentiation, degradation and programmed cell death. Another common response in eukaryotes is the extension of lifespan through dietary restriction (DR). We studied a link between DR and autophagy in the filamentous fungus Podospora anserina, a multicellular model organism for ageing studies and mitochondrial deterioration. While both carbon and nitrogen restriction extends lifespan in P. anserina, the size of the effect varied with the amount and type of restricted nutrient. Natural genetic variation for the DR response exists. Whereas a switch to carbon restriction up to halfway through the lifetime resulted in extreme lifespan extension for wild-type P. anserina, all autophagy-deficient strains had a shorter time window in which ageing could be delayed by DR. Under nitrogen limitation, only PaAtg1 and PaAtg8 mediate the effect of lifespan extension; the other autophagy-deficient mutants PaPspA and PaUth1 had a similar response as wild-type. Our results thus show that the ageing process impinges on the DR response and that this at least in part involves the genetic regulation of autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032521PMC
http://dx.doi.org/10.1098/rstb.2013.0447DOI Listing

Publication Analysis

Top Keywords

dietary restriction
8
filamentous fungus
8
fungus podospora
8
lifespan extension
8
autophagy
5
autophagy mediate
4
mediate age-dependent
4
age-dependent dietary
4
restriction
4
restriction responses
4

Similar Publications

L-carnitine protects against oxidative damage and neuroinflammation in cerebral cortex of rats submitted to chronic chemically-induced model of hyperphenylalaninemia.

Metab Brain Dis

January 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil.

Phenylketonuria is a genetic disorder characterized by high phenylalanine levels, the main toxic metabolite of the disease. Hyperphenylalaninemia can cause neurological impairment. In order to avoid this symptomatology, patients typically follow a phenylalanine-free diet supplemented with a synthetic formula that provides essential amino acids, including L-carnitine.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Objective: To test the short and long-term effects of consuming carbohydrate-rich beverages on patient-centred outcomes after caesarean delivery under spinal anaesthesia.

Study Design: A prospective randomised controlled study. Place and Duration of the Study: Department of Obstetrics and Gynaecology, Karaman Training and Research Hospital, Karaman, Turkiye, between May 2023 and February 2024.

View Article and Find Full Text PDF

The study evaluated the anti-hyperlipidemic effects of myrcenol and curzerene on a high fat diet induced hyperlipidemia rat model. Thirty male albino rats were fed on a high-fat diet for four months. The HFD-induced hyperperlipidemia rats were treated with rosuvastatin (10 mg/kg), curzerene (130 mg/kg) and myrcenol (100 mg/kg) for four weeks.

View Article and Find Full Text PDF

Zellweger spectrum disorder presenting with opsoclonus-myoclonus-ataxia syndrome: a case report on immunotherapy.

Acta Neurol Belg

January 2025

Department of Pediatrics, Neurology Unit, University of Health Sciences, Ankara Etlik City Hospital, Ankara, Turkey.

Introduction: Zellweger spectrum disorder (ZSD) refers to a group of autosomal recessive genetic disorders that affect multiple organ systems and are predominantly caused by pathogenic variants in PEX genes. ZSD present a wide clinical spectrum, ranging from the most severe form, Zellweger syndrome, to the mildest form, Heimler syndrome.

Case Report: A 14-month-old male patient was brought to our clinic with recent-onset ocular tremors and unsteady gait.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!