Tumor suppressor function of the calcium/phospholipid-binding Annexin-A7 (ANXA7) has been shown in Anxa7-deficient mice and validated in human cancers. In the androgen-resistant prostate cancer cells, ANXA7 and p53 showed similar cytotoxicity levels. However, in the androgen-sensitive LNCaP, ANXA7 greatly exceeded the p53-induced cytotoxicity. We hypothesized that the p53 underperformance in LNCaP could be due to the involvement of p53-responsive SGK1 and FOXO3A. In this study, we show that p53 failed to match programmed cell death (PCD) and G1-arrest that were induced by ANXA7 in LNCaP. WT-ANXA7 preserved total FOXO3A expression with no hyperphosphorylation that could enable FOXO3A nuclear translocation and proapoptotic transcription. In contrast, in the p53-transfected LNCaP cells with maintained cell proliferation, the phosphorylated (but not total) FOXO3A fraction was increased implying a predominantly cytoplasmic localization and, subsequently, a lack of FOXO3A proapoptotic transcription. In addition, p53 reduced the expression of aberrant SGK1 protein form in LNCaP. Using Ingenuity Pathway Analysis and p53-signature genes, we elucidated the role of distinct SGK1/FOXO3A-associated regulation in p53 versus ANXA7 responses and proposed that aberrant SGK1 could affect reciprocal SGK1-FOXO3A-Akt regulation. Thus, the failure of the cell growth regulator p53 versus the phospholipid-binding ANXA7 could be potentially attributed to its diverse effects on SGK1-FOXO3A-Akt pathway in the PTEN-deficient LNCaP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016907 | PMC |
http://dx.doi.org/10.1155/2014/193635 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!