Action potential-driven Ca(2+) currents from the transverse tubules (t-tubules) trigger synchronous Ca(2+) release from the sarcoplasmic reticulum of cardiomyocytes. Loss of t-tubules has been reported in cardiac diseases, including heart failure, but the effect of uncoupling t-tubules from the sarcolemma on cardiac muscle mechanics remains largely unknown. We dissected intact rat right ventricular trabeculae and compared force, sarcomere length, and intracellular Ca(2+) in control trabeculae with trabeculae in which the t-tubules were uncoupled from the plasma membrane by formamide-induced osmotic shock (detubulation). We verified disconnection of a consistent fraction of t-tubules from the sarcolemma by two-photon fluorescence imaging of FM4-64-labeled membranes and by the absence of tubular action potential, which was recorded by random access multiphoton microscopy in combination with a voltage-sensitive dye (Di-4-AN(F)EPPTEA). Detubulation reduced the amplitude and prolonged the duration of Ca(2+) transients, leading to slower kinetics of force generation and relaxation and reduced twitch tension (1 Hz, 30°C, 1.5 mM [Ca(2+)]o). No mechanical changes were observed in rat left atrial trabeculae after formamide shock, consistent with the lack of t-tubules in rodent atrial myocytes. Detubulation diminished the rate-dependent increase of Ca(2+)-transient amplitude and twitch force. However, maximal twitch tension at high [Ca(2+)]o or in post-rest potentiated beats was unaffected, although contraction kinetics were slower. The ryanodine receptor (RyR)2 Ca-sensitizing agent caffeine (200 µM), which increases the velocity of transverse Ca(2+) release propagation in detubulated cardiomyocytes, rescued the depressed contractile force and the slower twitch kinetics of detubulated trabeculae, with negligible effects in controls. We conclude that partial loss of t-tubules leads to myocardial contractile abnormalities that can be rescued by enhancing and accelerating the propagation of Ca(2+)-induced Ca(2+) release to orphan RyR2 clusters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035744PMC
http://dx.doi.org/10.1085/jgp.201311125DOI Listing

Publication Analysis

Top Keywords

ca2+ release
12
cardiac muscle
8
loss t-tubules
8
t-tubules sarcolemma
8
twitch tension
8
t-tubules
7
ca2+
6
force
5
trabeculae
5
impact detubulation
4

Similar Publications

The Anti-Human P2X7 Monoclonal Antibody (Clone L4) Can Mediate Complement-Dependent Cytotoxicity of Human Leukocytes.

Eur J Immunol

January 2025

Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.

P2X7 is an extracellular adenosine 5'-triphosphate (ATP)-gated cation channel that plays various roles in inflammation and immunity. P2X7 is present on peripheral blood monocytes, dendritic cells (DCs), and innate and adaptive lymphocytes. The anti-human P2X7 monoclonal antibody (mAb; clone L4), used for immunolabelling P2X7 or blocking P2X7 activity, is a murine IgG2 antibody, but its ability to mediate complement-dependent cytotoxicity (CDC) is unknown.

View Article and Find Full Text PDF

The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on (, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis.

View Article and Find Full Text PDF

Evaluation of Nanomagnetite-Biochar Composite for BTA Removal.

Nanomaterials (Basel)

January 2025

ISTerre, University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, University Gustave Eiffel, 38058 Grenoble, France.

In this study, the removal of benzotriazole (BTA), a pervasive aquatic contaminant widely used for its anti-corrosion, UV-stabilizing, and antioxidant properties, by nanomagnetite, biochar, and nanomagnetite-biochar composite is investigated. Nanomagnetite and nanomagnetite-biochar composite were synthesized under anoxic conditions and tested for BTA removal efficiency at neutral pH under both oxic and anoxic conditions at different time scales. Within the short time scale (up to 8 h), the removal of BTA by nanomagnetite-biochar composite was shown to be due to BTA deprotonation by the nanomagnetite surface.

View Article and Find Full Text PDF

Intracellular Membrane Contact Sites in Skeletal Muscle Cells.

Membranes (Basel)

January 2025

Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.

Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!