Rhizoctonia solani (R. solani), a soil-borne necrotrophic pathogen, causes various plant diseases. Rhizoctonia solani is a mitosporic fungus, the sclerotium of which is the primary inoculum and ensures survival of the fungus during the offseason of the host crop. Since the fungus does not produce any asexual or sexual spores, understanding the biology of sclerotia is important to examine pathogen ecology and develop more efficient methods for crop protection. Here, one- and two-dimensional gel electrophoresis (1-DE and 2-DE, respectively) were used to examine protein regulation during the maturation of fungal sclerotia. A total of 75 proteins (20 proteins from 1-DE using matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) and 55 proteins from 2-DE using MALDI-TOF MS or MALDI-TOF/TOF MS) were differentially expressed during sclerotial maturation. The identified proteins were classified into ten categories based on their biological functions, including genetic information processing, carbohydrate metabolism, cell defense, amino acid metabolism, nucleotide metabolism, cellular processes, pathogenicity and mycotoxin production, and hypothetical or unknown functions. Interestingly, two vacuole function-related proteins were highly up-regulated throughout sclerotial maturation, which was confirmed at the transcript level by reverse transcriptase polymerase chain reaction (RT-PCR) analysis. These findings contribute to our understanding of the biology of R. solani sclerotia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2014.02.001DOI Listing

Publication Analysis

Top Keywords

rhizoctonia solani
12
understanding biology
8
sclerotial maturation
8
solani
5
proteins
5
proteomic analysis
4
analysis rhizoctonia
4
solani ag-1
4
sclerotia
4
ag-1 sclerotia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!