The flavonoid quercetin and menadione (vitamin K3) are known as potent apoptogens in human leukemia Jurkat T cells. We explored some underlying mechanisms and the potential relevance of the combination quercetin-menadione for clinical applications. In acute treatments, quercetin manifested a strong antioxidant character, but induced a transient loss of Δψm, likely mediated by opening of the mitochondrial permeability transition pore. After removal of quercetin, persistent mitochondrial hyperpolarization was generated via stimulation of respiratory Complex I. In contrast, menadione-induced Δψm dissipation was only partially and transiently reversed after menadione removal. Results indicate that Ca(2+) release is a necessary event in quercetin-induced cell death and that the survival response to quercetin is delineated within 1h from exposure. Depending on dose, the two agents exhibited either antagonistic or synergistic effects in reducing clonogenicity of Jurkat cells. 24-h combinatorial regimens at equimolar concentrations of 10-15 μM, which are compatible with a clinically achievable (and safe) scheme, reduced cell viability at efficient rates. Altogether, these findings support the idea that the combination quercetin-menadione could improve the outcome of conventional leukemia therapies, and warrant the utility of additional studies to investigate the therapeutic effects of this combination in different cellular or animal models for leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2014.04.010DOI Listing

Publication Analysis

Top Keywords

jurkat cells
12
quercetin menadione
8
human leukemia
8
leukemia jurkat
8
combination quercetin-menadione
8
quercetin
5
novel insights
4
insights antiproliferative
4
antiproliferative effects
4
effects synergism
4

Similar Publications

An integrated microflow cytometry platform with artificial intelligence capabilities for point-of-care cellular phenotype analysis.

Biosens Bioelectron

December 2024

Department of Biotechnology, National Formosa University, No. 64, Wunhua Rd, Huwei Township, Yunlin County, 63201, Taiwan. Electronic address:

The EZ DEVICE is an integrated fluorescence microflow cytometer designed for automated cell phenotyping and enumeration using artificial intelligence (AI). The platform consists of a laser diode, optical filter, objective lens, CMOS image sensor, and microfluidic chip, enabling automated sample pretreatment, labeling, and detection within a single compact unit. AI algorithms segment and identify objects in images captured by the CMOS sensor at 532 and 586 nm emission wavelengths.

View Article and Find Full Text PDF

Ginsenoside Rh2 promotes cell apoptosis in T-cell acute lymphocytic leukaemia by MAPK and PI3K/AKT signalling pathways.

Nat Prod Res

December 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.

T-cell acute lymphoblastic leukaemia (T-ALL) is a common childhood malignant tumour, which has poor prognosis and high recurrence rate. Ginsenoside Rh2 (GRh2), a bioactive ingredient of has significant anti-tumour effect. In this study, we found that gene expressions of Jurkat cells were significantly changed in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signalling pathways after 35 µm GRh2 treatment, involving in JUN, PIEN, AKT3 and MAPK8IP2.

View Article and Find Full Text PDF

In vitro evaluation of the toxicity mechanisms of two functionalized reduced graphene oxide derivatives.

Chem Biol Interact

December 2024

Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.

Dodecyl amine functionalized reduced graphene oxide (DA-rGO) and [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized rGO (MTAC-rGO) have been developed and characterised for their further use in the food packaging industry as food contact materials. But before their application, an authorization procedure is required in which their safety plays a key role. Therefore, the aim of this work was to evaluate their toxicity with focus on two different toxicity mechanisms: genotoxicity and immunotoxicity.

View Article and Find Full Text PDF

De novo interleukin-10 production primed by Lactobacillus sakei CVL-001 amplifies the immunomodulatory abilities of mesenchymal stem cells to alleviate colitis.

Biomed Pharmacother

December 2024

Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea. Electronic address:

Mesenchymal stem cells (MSCs) hold therapeutic promise for treating inflammatory bowel disease (IBD) owing to their immunomodulatory properties. Currently, pre-conditioning strategies with several beneficial agents have been applied to enhance the efficacy of MSCs in treating IBDs. Probiotics are increasingly acknowledged as supplemental therapy for IBD; however, their potential benefits in MSCs-based therapy remain largely unexplored.

View Article and Find Full Text PDF

Nanomedicines offer high promise for the treatment of various diseases, and numerous novel approaches using nanomaterials have been developed over the years. In this report, we introduce a new strategy utilizing ZnO nanoparticles (nZnO) to trigger the rapid release of lipid-encapsulated therapeutics upon photo-irradiation with UV light (365 nm). studies demonstrate that encapsulation of nZnO effectively eliminates the cytotoxicity of nZnO, but this can be re-established upon release from the lipid coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!