Intranasal application of dopamine (IN-DA) has been shown to increase motor activity and to release DA in the ventral (VS) and dorsal striatum (DS) of rats. The aim of the present study was to assess the effects of IN-DA treatment on parameters of DA and excitatory amino acid (EAA) function in prepuberal rats of the Naples high-excitability (NHE) line, an animal model for attention-deficit hyperactivity disorder (ADHD) and normal random bred (NRB) controls. NHE and NRB rats were daily administered IN-DA (0.075, 0.15, 0.30 mg/kg) or vehicle for 15 days from postnatal days 28-42 and subsequently tested in the Làt maze and in the Eight-arm radial Olton maze. Soluble and membrane-trapped L-glutamate (L-Glu) and L-aspartate (L-Asp) levels as well as NMDAR1 subunit protein levels were determined after sacrifice in IN-DA- and vehicle-treated NHE and NRB rats in prefrontal cortex (PFc), DS and VS. Moreover, DA transporter (DAT) protein and tyrosine hydroxylase (TH) levels were assessed in PFc, DS, VS and mesencephalon (MES) and in ventral tegmental area (VTA) and substantia nigra, respectively. In NHE rats, IN-DA (0.30 mg/kg) decreased horizontal activity and increased nonselective attention relative to vehicle, whereas the lower dose (0.15 mg/kg) increased selective spatial attention. In NHE rats, basal levels of soluble EAAs were reduced in PFc and DS relative to NRB controls, while membrane-trapped EAAs were elevated in VS. Moreover, basal NMDAR1 subunit protein levels were increased in PFc, DS and VS relative to NRB controls. In addition, DAT protein levels were elevated in PFc and VS relative to NRB controls. IN-DA led to a number of changes of EAA, NMDAR1 subunit protein, TH and DAT protein levels in PFc, DS, VS, MES and VTA, in both NHE and NRB rats with significant differences between lines. Our findings indicate that the NHE rat model of ADHD may be characterized by (1) prefrontal and striatal DAT hyperfunction, indicative of DA hyperactivty, and (2) prefrontal and striatal NMDA receptor hyperfunction indicative of net EAA hyperactivty. IN-DA had ameliorative effects on activity level, attention, and working memory, which are likely to be associated with DA action at inhibitory D2 autoreceptors, leading to a reduction in striatal DA hyperactivity and, possibly, DA action on striatal EAA levels, resulting in a decrease of striatal EAA hyperfunction (with persistence of prefrontal EAA hyperfunction). Previous studies on IN-DA treatment in rodents have indicated antidepressant, anxiolytic and anti-parkinsonian effects in relation to enhanced central DAergic activity. Our present results strengthen the prospects of potential therapeutic applications of intranasal DA by indicating an enhancement of selective attention and working memory in a deficit model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-014-1753-8 | DOI Listing |
medRxiv
December 2024
Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
In studies of individuals of primarily European genetic ancestry, common and low-frequency variants and rare coding variants have been found to be associated with the risk of bipolar disorder (BD) and schizophrenia (SZ). However, less is known for individuals of other genetic ancestries or the role of rare non-coding variants in BD and SZ risk. We performed whole genome sequencing of African American individuals: 1,598 with BD, 3,295 with SZ, and 2,651 unaffected controls (InPSYght study).
View Article and Find Full Text PDFCirc Cardiovasc Qual Outcomes
November 2024
Department of Cardiology, Amsterdam Cardiovascular Sciences Heart Failure and Arrhythmias, Amsterdam University Medical Centers Location University of Amsterdam, Heart Center, the Netherlands (R.E.K., J.A.d.V., L.V.A.B., T.F.B., S.P., A.-F.B.E.Q., L.S., W.v.d.S., A.d.W., J.R.d.G., K.M.K., J.G.P.T., A.A.M.W., L.R.A.O.N.).
Front Immunol
July 2024
Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
There is a reciprocal relationship between extracellular matrix (ECM) remodelling and inflammation that could be operating in the progression of severe COVID-19. To explore the immune-driven ECM remodelling in COVID-19, we in this explorative study analysed these interactions in hospitalised COVID-19 patients. RNA sequencing and flow analysis were performed on peripheral blood mononuclear cells.
View Article and Find Full Text PDFMinimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases.
View Article and Find Full Text PDFCell Rep
June 2024
IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy. Electronic address:
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1 DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1. We employ pharmacological and genetic approaches to rescue DDR and NER during aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!