The pacemaker current If conducted by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels plays a critical role in the regulation of cardiac automaticity, with If density increased in hypertrophied ventricular myocytes. Amiodarone, a highly effective anti-arrhythmic agent, blocks human HCN currents and native If under normal conditions. To determine the effects of amiodarone under pathological conditions, we monitored If under after both acute (0.01, 0.1, 1, 10 and 100 μmol/L) and chronic (10 μmol/L) amiodarone treatment in ventricular myocytes from spontaneously hypertensive rats (SHR) with left ventricular hypertrophy using the whole-cell patch-clamp technique. The If current density was significantly greater in SHR ventricular myocytes than in cells from healthy normotensive control Wistar-Kyoto (WKY) rats. Acute application of amiodarone significantly decreased If density in myocytes from both SHR and WKY rats. The inhibition was concentration dependent with an IC50 of 4.9 ± 1.2 and 6.9 ± 1.3 μmol/L in myocytes from SHR and WKY rats, respectively. Amiodarone increased the activation and deactivation times of If in myocytes from SHR, although it did not alter the relationship of voltage-dependent activation and the reversal potential of If in myocytes from SHR. Chronic exposure of myocytes from SHR to amiodarone potently inhibited If and downregulated HCN2 and HCN4, the major channel subtypes underlying native If , at both the mRNA and protein level. These findings indicate that amiodarone inhibits If under hypertrophied conditions through dual mechanisms: (i) direct channel blockade of If currents; and (ii) indirect suppression via negative regulation of HCN channel gene expression. These unique properties of amiodarone may contribute to its anti-arrhythmic properties under pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.12264DOI Listing

Publication Analysis

Top Keywords

myocytes shr
20
ventricular myocytes
16
wky rats
12
amiodarone
9
myocytes
9
effects amiodarone
8
hypertrophied ventricular
8
spontaneously hypertensive
8
hypertensive rats
8
pathological conditions
8

Similar Publications

Angiotensin III activates ERK1/2 mitogen activated protein kinases and proliferation of rat vascular smooth muscle cells.

J Recept Signal Transduct Res

January 2025

Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.

The proliferative effects of angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) through its ability to stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway have been established. The main goal of this study was to explore whether Ang III induces ERK1/2 MAPK and VSMC proliferation in cultured Wistar VSMCs. Further, the Ang III actions were compared to those observed in VSMCs derived from the spontaneously hypertensive rat (SHR).

View Article and Find Full Text PDF

Annexin A5 (ANXA5) is a small calcium-dependent protein that binds specifically to negatively charged phosphatidylserine as a marker of apoptosis. Previous studies have shown that ANXA5 expression is elevated in hypertensive patients and is closely related to left ventricular systolic function in hypertensive patients, but its specific mechanism of action has not been clarified. GEO database analysis showed that ANXA5 expression was significantly upregulated in hypertensive myocardial hypertrophy.

View Article and Find Full Text PDF
Article Synopsis
  • Hypertension leads to thickening of the aortic wall as the body tries to restore normal stress levels.
  • Researchers proposed that stress fibers (SFs) in smooth muscle cells (SMCs) transmit this mechanical tension to the nucleus, influencing cell response.
  • By studying thoracic aortas from different rat models (Wistar Kyoto and spontaneously hypertensive), they found that SF strain varies with changes in blood pressure, confirming SFs act as mechanosensors to respond to hypertensive conditions.
View Article and Find Full Text PDF

Drugs such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can improve muscle function and exercise capacity, as well as preventing, attenuating or reversing age-related losses in muscle mass, however, the exact mechanisms by which these drugs affect muscle cells, are not yet fully elucidated. Moreover, the potential epigenetic alterations induced in skeletal muscle tissue are also largely unexplored. The aim of this study was to evaluate if enalapril or losartan can change the physical performance and epigenetic profile of skeletal muscle in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Rhythmic Contractions of Lymph Vessels and Lymph Flow Are Disrupted in Hypertensive Rats.

Hypertension

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy (S.P., A.K.B., A.J.S.), University of Arkansas for Medical Sciences, Little Rock, AR.

Background: Hypertension increases the risk of lymphedema in patients with comorbidities, but whether hypertension directly compromises lymph vessel (LV) function and lymph flow is unclear. We compared the contractions of mesenteric LVs ex vivo and lymph flow in vivo between normotensive and Ang II (angiotensin II)-induced hypertensive rats and explored the ionic basis of contractile patterns. Key studies were recapitulated in spontaneously hypertensive rats and control Wistar-Kyoto rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!