Microbial anodes were formed under polarization at -0.3 V/SCE on graphite plates in effluents from a pulp and paper mill. The bioanodes formed with the addition of acetate led to the highest current densities (up to 6A/m(2)) but were then unable to oxidize the raw effluent efficiently (0.5A/m(2)). In contrast, the bioanodes formed without acetate addition were fully able to oxidize the organic matter contained in the effluent, giving up to 4.5A/m(2) in continuous mode. Bacterial communities showed less bacterial diversity for the acetate-fed bioanodes compared to those formed in raw effluents. Deltaproteobacteria were the most abundant taxonomic group, with a high diversity for bioanodes formed without acetate addition but with almost 100% Desulfuromonas for the acetate-fed bioanodes. The addition of acetate to form the microbial anodes induced microbial selection, which was detrimental to the treatment of the raw effluent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.04.088DOI Listing

Publication Analysis

Top Keywords

microbial anodes
12
acetate addition
12
bioanodes formed
12
paper mill
8
addition acetate
8
raw effluent
8
formed acetate
8
acetate-fed bioanodes
8
acetate
5
addition
5

Similar Publications

Bioelectronic and photogenerated electron synergistic catalyzed removal of chlorhexidine: Degradation and mechanism.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087,  China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.

View Article and Find Full Text PDF

Revealed mechanism of 3D-open-microarray boosting exoelectrogens Geobacter enrichment and extracellular electron transfer for high power generation in microbial fuel cells.

Bioresour Technol

January 2025

Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065 PR China. Electronic address:

Theanode enables raised microbial fuel cells (MFCs) performance via in-situ growth electroactive material. However, the role of fabricated microstructures in electroactive bacteria loading and extracellular electron transfer (EET) has been paid less attention. Here, MoS2 nanosheets are custom grown on carbon cloth to construct anode models with diverse surface microstructures.

View Article and Find Full Text PDF

Carbon filter layer for respirator derived from acrylic filter felt.

Waste Manag

January 2025

Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic.

Pyrolysis emerges as a strategy for handling waste textiles, wherein the conversion of high-carbon-content textile waste into carbonaceous materials facilitates the restoration of its economic value, concurrently mitigating the environmental impact posed by textile waste. The present study fabricated carbon felts for respiratory filter layers through single-step pyrolysis of acrylic filter felts. The advantage of employing conductive carbon felt as a respiratory filter layer is its capability to concurrently serve two functions: filtration and electrical heating for high-temperature disinfection.

View Article and Find Full Text PDF

Removal of mixed antibiotics from saline wastewater under intermittent electrical stimulation and alterations of microbial communities and resistance genes.

Environ Res

January 2025

Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.

Antibiotics and antibiotic resistance genes (ARGs) are severe refractory pollutants in water. However, the effect of an intermittent electrical stimulation on the removal of antibiotics and ARGs from saline wastewater remains unclear. An anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) was used to treat tetracyclines (TCs) and quinolones (QNs) in saline wastewater.

View Article and Find Full Text PDF

Understanding the microbial processes on carbon brushes that accelerate methanogenesis of long-chain fatty acids in anaerobic digestion.

Water Res

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China. Electronic address:

Lipids offer high energy recovery potential during anaerobic digestion (AD), but their hydrolysis generates long-chain fatty acids (LCFAs), which are difficult to biodegrade. The introduction of microbial electrolysis cells has been widely recognized as a promising strategy to enhance AD. However, it is still under debate whether the electrical circuit needs to be connected, as certain electrodes with large specific surface areas have been reported to enhance direct interspecies electron transfer (DIET) without requiring an external power supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!