Laryngeal cancer due to, e.g., extensive smoking and/or alcohol consumption can necessitate the excision of the entire larynx. After such a total laryngectomy, the voice generating structures are lost and with that the quality of life of the concerning patients is drastically reduced. However, the vibrations of the remaining tissue in the so called pharyngoesophageal (PE) segment can be applied as alternative sound generator. Tissue, scar, and geometric aspects of the PE-segment determine the postoperative substitute voice characteristic, being highly important for the future live of the patient. So far, PE-dynamics are simulated by a biomechanical model which is restricted to stationary vibrations, i.e., variations in pitch and amplitude cannot be handled. In order to investigate the dynamical range of PE-vibrations, knowledge about the temporal processes during substitute voice production is of crucial interest. Thus, time-dependent model parameters are suggested in order to quantify non-stationary PE-vibrations and drawing conclusions on the temporal characteristics of tissue stiffness, oscillating mass, pressure, and geometric distributions within the PE-segment. To adapt the numerical model to the PE-vibrations, an automatic, block-based optimization procedure is applied, comprising a combined global and local optimization approach. The suggested optimization procedure is validated with 75 synthetic data sets, simulating non-stationary oscillations of differently shaped PE-segments. The application to four high-speed recordings is shown and discussed. The correlation between model and PE-dynamics is ≥ 97%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323877 | PMC |
http://dx.doi.org/10.1007/s10237-014-0597-1 | DOI Listing |
Biol Imaging
November 2024
Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France.
We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
Introduction: Computational fluid dynamics (CFD) is gaining momentum as a useful mechanism for analyzing obstructive disorders and surgeries in humans and warrants further development for application in equine surgery. While advancements in procedures continue, much remains unknown about the specific impact that different surgeries have on obstructive airway disorders. The objective of this study was to apply CFD analysis to an equine head inhalation model replicating recurrent laryngeal neuropathy (RLN) and four surgical procedures.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Physics, McGill University, 845 Sherbrooke West, Montréal, Canada.
Solid-state nanopores exhibit dynamically variable sizes influenced by buffer conditions and applied electric field. While dynamical pore behavior can complicate biomolecular sensing, it also offers opportunities for controlled, modification of pore size post-fabrication. In order to optimally harness solid-state pore dynamics for controlled growth, there is a need to systematically quantify pore growth dynamics and ideally develop quantitative models to describe pore growth.
View Article and Find Full Text PDFPLoS One
January 2025
IT4Innovations, VSB - Technical University of Ostrava, Ostrava, Czech Republic.
Malware is a common word in modern era. Everyone using computer is aware of it. Some users have to face the problem known as Cyber crimes.
View Article and Find Full Text PDFPLoS One
January 2025
Nantong Institute of Technology, Nantong, Jiangsu Province, China.
Vehicle-mounted flexible robotic arms (VFRAs) are crucial in enhancing operational capabilities in sectors where human intervention is limited due to accessibility or safety concerns, such as hazardous environments or precision surgery. This paper introduces the latest generation of VFRAs that utilize advanced soft materials and are designed with elongated structures to provide greater flexibility and control. We present a novel mathematical model, derived using Hamilton's principle, which simplifies the analysis of the arm's dynamic behaviors by employing partial differential equations (PDEs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!