Light emission of semiconductor nanocrystals is a complex process, depending on many factors, among which are the quantum mechanical size confinement of excitons (coupled electron-hole pairs) and the influence of confined phonon modes and the nanocrystal surface. Despite years of research, the nature of nanocrystal emission at low temperatures is still under debate. Here we unravel the different optical recombination pathways of CdSe/CdS dot-in-rod systems that show an unprecedented number of narrow emission lines upon resonant laser excitation. By using self-assembled, vertically aligned rods and application of crystallographically oriented high magnetic fields, the origin of all these peaks is established. We observe a clear signature of an acoustic-phonon assisted transition, separated from the zero-phonon emission and optical-phonon replica, proving that nanocrystal light emission results from an intricate interplay between bright (optically allowed) and dark (optically forbidden) exciton states, coupled to both acoustic and optical phonon modes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn501026tDOI Listing

Publication Analysis

Top Keywords

cdse/cds dot-in-rod
8
light emission
8
phonon modes
8
emission
5
observation full
4
full exciton
4
exciton phonon
4
phonon fine
4
fine structure
4
structure cdse/cds
4

Similar Publications

We demonstrated that the aspect ratio (AR)-tunable CdSe/CdS dot-in-rod (DiR) nanostructures with quasi-type-II band structure were successively synthesized using the hot injection method. When the AR of CdSe/CdS DiR was tuned from 10 to 37, the exciton localization efficiency along the longitudinal CdS rod shell decreased from 57.9 to 15.

View Article and Find Full Text PDF
Article Synopsis
  • Exciton-phonon coupling affects the clarity of light emitted from nanocrystals, making it important to study this phenomenon.
  • This research involves single-particle spectroscopy experiments on various colloidal nanocrystals at approximately 10 K to analyze exciton-phonon interactions.
  • The results reveal that the intensity of phonon replicas is linked to charge-carrier distribution, with quantum mechanical calculations suggesting that surface charges play a significant role.
View Article and Find Full Text PDF

Linearly polarized emission from CdSe/CdS core-in-rod nanostructures: Effects of core position.

J Chem Phys

April 2023

Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Energy and Environmental Research Center (EERC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.

Semiconductor nanocrystals with an anisotropic morphology exhibit unique properties, most notably their linear polarization. The colloidal growth of semiconductor nanorods with core dots inside, also referred to as dot-in-rod (DIR) structure, has enabled the synthesis of anisotropic nanocrystals with better stability and controllable fluorescence polarization. In this study, we synthesize CdSe/CdS DIR nanocrystals, in which the position of the CdSe core particle can be controlled by using different ligand compositions during the CdS growth.

View Article and Find Full Text PDF

Investigation of the Photocatalytic Hydrogen Production of Semiconductor Nanocrystal-Based Hydrogels.

Small

May 2023

Cluster of Excellence PhoenixD (Photonics, Optics and Engineering -Innovation Across Disciplines), Leibniz University Hannover, 30167, Hannover, Germany.

Destabilization of a ligand-stabilized semiconductor nanocrystal solution with an oxidizing agent can lead to a macroscopic highly porous self-supporting nanocrystal network entitled hydrogel, with good accessibility to the surface. The previously reported charge carrier delocalization beyond a single nanocrystal building block in such gels can extend the charge carrier mobility and make a photocatalytic reaction more probable. The synthesis of ligand-stabilized nanocrystals with specific physicochemical properties is possible, thanks to the advances in colloid chemistry made in the last decades.

View Article and Find Full Text PDF

Anisotropic strain engineering has emerged as a powerful strategy for enhancing the optoelectronic performance of semiconductor nanocrystals. Here, we show that CdSe/CdS dot-in-rod structures offer a platform for fine-tuning the optical response of CdSe quantum dots through anisotropic strain. By controlling the spatial position of the CdSe core within a growing CdS nanorod shell, varying degrees of uniaxial strain can be introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!