Human respiratory syncytial virus isolates have previously been shown to exhibit resistance to neutralization by anti-fusion glycoprotein antibodies that is lost on passage in cell culture. Early passage resistant and late passage susceptible stocks of two virus isolates from different epidemics were cloned by plaque purification. Early passage stocks of both isolates yielded predominantly neutralization resistant clones while late passage stocks yielded predominantly susceptible clones. On further characterization of resistant and susceptible clones, resistant virus yields were lower and they were relatively resistant to both neutralization and fusion inhibition by anti-F murine monoclonal antibodies and were also resistant to neutralization by human sera and by Palivizumab. The full genome of resistant and susceptible clones from one of the isolates was sequenced. Four differences, confirmed by sequencing sister clones, were found between resistant and susceptible clones, one in each of the SH, G, F, and L genes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.23980DOI Listing

Publication Analysis

Top Keywords

susceptible clones
16
resistant susceptible
12
neutralization anti-fusion
8
anti-fusion glycoprotein
8
human respiratory
8
respiratory syncytial
8
syncytial virus
8
cell culture
8
virus isolates
8
early passage
8

Similar Publications

Colistin- and carbapenem-resistant (ColR CrKp) cause important health problems in pediatric intensive care units (PICUs) due to its ability to harbor multiple resistance genes and spread of high-risk clones. In this study, molecular epidemiological characteristics, transferable resistance genes, and alterations of ColR CrKp isolated from PICU were investigated. Isolates were identified by MALDI-TOF MS, and antimicrobial susceptibility tests were performed using disk diffusion method, gradient strip test, and broth microdilution method.

View Article and Find Full Text PDF

Characterizing Three Heat Shock Protein 70 Genes of and Their Expression in Response to Temperature and Insecticide Stress.

J Agric Food Chem

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

is a highly polyphagous pest that causes substantial agricultural damage. Temperature and insecticides are two major abiotic stresses affecting their population abundance. Heat shock proteins play an essential role in cell protection when insects are exposed to environmental stresses.

View Article and Find Full Text PDF

Population structure provides essential information for developing meaningful conservation plans. This is especially important in remote places, such as oceanic islands, where limited population sizes and genetic isolation can make populations more susceptible and self-dependent. In this study, we assess and compare the relatedness, population genetics and molecular ecology of two sympatric Acropora species, A.

View Article and Find Full Text PDF

Detection of O25b-ST131 clone in extended spectrum beta-lactamase-producing E. coli from urinary tract infections in Mexico.

J Infect Dev Ctries

December 2024

Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico. Cuernavaca, Morelos, México.

Introduction: Escherichia coli has emerged as an important pathogen in urinary tract infections (UTIs) due to the rapid acquisition of antibiotic resistance genes. This enhances the ability of E. coli to colonize and creates therapeutic challenges within the healthcare system.

View Article and Find Full Text PDF

causes hospital-acquired infections in human patients with compromised immune system. Strains associated to nosocomial infections are often resistant to carbapenems and belong to few international clones (IC1-11). .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!