Background: The activity of thiopurine methyltransferase (TPMT) is subject to genetic variation. Loss-of-function alleles are associated with various degrees of myelosuppression after treatment with thiopurine drugs, thus genotype-based dosing recommendations currently exist. The aim of this study was to evaluate the potential utility of leveraging genomic data from large biorepositories in the identification of individuals with TPMT defective alleles.

Material And Methods: TPMT variants were imputed using the 1000 Genomes Project reference panel in 87,979 samples from the biobank at The Children's Hospital of Philadelphia. Population ancestry was determined by principal component analysis using HapMap3 samples as reference. Frequencies of the TPMT imputed alleles, genotypes and the associated phenotype were determined across the different populations. A sample of 630 subjects with genotype data from Sanger sequencing (N = 59) and direct genotyping (N = 583) (12 samples overlapping in the two groups) was used to check the concordance between the imputed and observed genotypes, as well as the sensitivity, specificity and positive and negative predictive values of the imputation.

Results: Two SNPs (rs1800460 and rs1142345) that represent three TPMT alleles ((*)3A, (*)3B, and (*)3C) were imputed with adequate quality. Frequency for the associated enzyme activity varied across populations and 89.36-94.58% were predicted to have normal TPMT activity, 5.3-10.31% intermediate and 0.12-0.34% poor activities. Overall, 98.88% of individuals (623/630) were correctly imputed into carrying no risk alleles (553/553), heterozygous (45/46) and homozygous (25/31). Sensitivity, specificity and predictive values of imputation were over 90% in all cases except for the sensitivity of imputing homozygous subjects that was 80.64%.

Conclusion: Imputation of TPMT alleles from existing genomic data can be used as a first step in the screening of individuals at risk of developing serious adverse events secondary to thiopurine drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026736PMC
http://dx.doi.org/10.3389/fgene.2014.00096DOI Listing

Publication Analysis

Top Keywords

imputation tpmt
8
tpmt defective
8
thiopurine drugs
8
genomic data
8
sensitivity specificity
8
predictive values
8
tpmt alleles
8
tpmt
7
alleles
6
imputed
5

Similar Publications

Multi-omic underpinnings of epigenetic aging and human longevity.

Nat Commun

April 2023

Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.

Biological aging is accompanied by increasing morbidity, mortality, and healthcare costs; however, its molecular mechanisms are poorly understood. Here, we use multi-omic methods to integrate genomic, transcriptomic, and metabolomic data and identify biological associations with four measures of epigenetic age acceleration and a human longevity phenotype comprising healthspan, lifespan, and exceptional longevity (multivariate longevity). Using transcriptomic imputation, fine-mapping, and conditional analysis, we identify 22 high confidence associations with epigenetic age acceleration and seven with multivariate longevity.

View Article and Find Full Text PDF

Polymorphisms thiopurine-S-methyltransferase () and nudix hydrolase 15 () can increase the risk of azathioprine myelotoxicity, but little is known about other genetic factors that increase risk for azathioprine-associated side effects. PrediXcan is a gene-based association method that estimates the expression of individuals' genes and examines their correlation to specified phenotypes. As proof of concept for using PrediXcan as a tool to define the association between genetic factors and azathioprine side effects, we aimed to determine whether the genetically predicted expression of TPMT or NUDT15 was associated with leukopenia or other known side effects.

View Article and Find Full Text PDF

Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China.

Int J Neurosci

June 2018

a Neuroinfection and Neuroimmunology Center , Department of Neurology, Beijing Tiantan Hospital , Capital Medical University, Beijing , P. R. China.

Aim Of The Study: Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345).

View Article and Find Full Text PDF

Background: The activity of thiopurine methyltransferase (TPMT) is subject to genetic variation. Loss-of-function alleles are associated with various degrees of myelosuppression after treatment with thiopurine drugs, thus genotype-based dosing recommendations currently exist. The aim of this study was to evaluate the potential utility of leveraging genomic data from large biorepositories in the identification of individuals with TPMT defective alleles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!