Land plants have evolved a host of anatomical and molecular adaptations for terrestrial growth. Many of these adaptations are believed to be elaborations of features that were present in their algal-like progenitors. In the model plant Arabidopsis, 10 Calcineurin B-Like proteins (CBLs) function as calcium sensors and modulate the activity of 26 CBL-Interacting Protein Kinases (CIPKs). The CBL-CIPK network coordinates environmental responses and helps maintain proper ion balances, especially during abiotic stress. We identified and analyzed CBL and CIPK homologs in green lineages, including CBLs and CIPKs from charophyte green algae, the closest living relatives of land plants. Phylogenomic evidence suggests that the network expanded from a small module, likely a single CBL-CIPK pair, present in the ancestor of modern plants and algae. Extreme conservation of the NAF motif, which mediates CBL-CIPK physical interactions, among all identified CIPKs supports the interpretation of CBL and CIPK homologs in green algae and early diverging land plants as functionally linked network components. We identified the full complement of CBL and CIPK loci in the genome of Physcomitrella, a model moss. These analyses demonstrate the strong effects of a recent moss whole genome duplication: CBL and CIPK loci appear in cognate pairs, some of which appear to be pseudogenes, with high sequence similarity. We cloned all full-length transcripts from these loci and performed yeast two-hybrid analyses to demonstrate CBL-CIPK interactions and identify specific connections within the network. Using phylogenomics, we have identified three ancient types of CBLs that are discernible by N-terminal localization motifs and a "green algal-type" clade of CIPKs with members from Physcomitrella and Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030171 | PMC |
http://dx.doi.org/10.3389/fpls.2014.00187 | DOI Listing |
Genes (Basel)
September 2024
School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China.
Background/objectives: Nitrogen is an essential macroelement for plant growth and productivity. Calcium (Ca) acts as a critical second messenger in numerous adaptations and developmental processes in plants. The Calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway has been demonstrated to be involved in multiple intracellular ion homeostasis of plants in response to stresses.
View Article and Find Full Text PDFBMC Plant Biol
September 2024
School of Agriculture, Yunnan University, Kunming , Yunnan, 650504, China.
Plant Physiol Biochem
October 2024
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, Gansu Province, Lanzhou 730000, China. Electronic address:
Plant Cell Environ
December 2024
College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
Int J Biol Macromol
October 2024
Guangxi Key Lab for Sugarcane Biology, State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, College of Agriculture, Guangxi University, Nanning 530005, China. Electronic address:
Calcineurin B-like proteins (CBLs) perceive calcium signals triggered by abiotic stress and interact with CBL-interacting protein kinases (CIPKs) to form a complex signal network. This study identified 21 SsCBL and 89 SsCIPK genes in Saccharum spontaneum, and 90 ScCBL and 367 ScCIPK genes in the sugarcane cultivar ZZ1. Phylogenetic analysis classified CBL genes into three groups and CIPK genes into twenty-five groups, with whole-genome duplication events promoting their expansion in sugarcane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!