The asymmetric unit of the title salt, C36H32N2 (2+)·2C6H4ClO3S(-), consists of one anion and one half-cation, the other half being generated by inversion symmetry. The dihedral angle between the pyridinium ring and the napthalene ring system in the asymmetric unit is 42.86 (6)°. In the crystal, cations and anions are linked by weak C-H⋯O inter-actions into chains along [010]. Adjacent chains are further arranged in an anti-parallel manner into sheets parallel to the bc plane. π-π inter-actions are observed involving the cations, with centroid-centroid distances of 3.7664 (8) and 3.8553 (8) Å.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011255PMC
http://dx.doi.org/10.1107/S160053681400645XDOI Listing

Publication Analysis

Top Keywords

asymmetric unit
8
22'-[24-bisnaphthalen-1-ylcyclo-butane-13-di-yl]bis-1-methyl-pyridinium bis-4-chloro-benzene-sulfonate
4
bis-4-chloro-benzene-sulfonate thermal-induced
4
thermal-induced [2 + 2]
4
[2 + 2] cyclo-addition
4
cyclo-addition reaction
4
reaction heterostilbene
4
heterostilbene asymmetric
4
unit title
4
title salt
4

Similar Publications

Diagnosis of nevoid melanoma (NeM) is often difficult because NeM closely resembles a common nevus clinically and histologically. A retrospective study was conducted on 110 patients diagnosed with and/or treated for primary nevoid melanoma at the Veneto Institute of Oncology and at the University Hospital of Padua from August 1999. Mean Breslow thickness was of 1.

View Article and Find Full Text PDF

Asymmetric gem-Hydroboration and gem-Hydrogenation of Ynamides: A New Gateway to Chiral Fischer Carbene Complexes and their Catalytic Transformations.

Angew Chem Int Ed Engl

January 2025

Max-Planck-Institut fur Kohlenforschung, Organometallic Chemistry, Kaiser-Wilhelm-Platz 1, 45470, Mülheim/Ruhr, GERMANY.

Ynamides, when reacted with H2 or HBpin in the presence of [Cp*RuCl]4, convert into chiral-at-metal Fischer carbenes by regioselective gem-hydrogenation or gem-hydroboration of the polarized triple bond, respectively. gem-Hydroboration concomitantly affords a carbogenic borylated stereocenter adjacent to the ruthenium carbene unit, the configuration of which can be controlled using an Evans auxiliary. These are the first examples of asymmetric gem-addition reactions to alkynes known in the literature; representative pianostool ruthenium carbene complexes formed by this unconventional route were characterized by crystallographic and spectroscopic means.

View Article and Find Full Text PDF

Crystallographic analysis of the Escherichia coli tRNA seleno-modification enzyme in complex with tRNA.

Acta Crystallogr F Struct Biol Commun

February 2025

Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.

The bacterial enzyme tRNA 2-selenouridine synthase (SelU) catalyzes the conversion of 5-substituted 2-thiouridine (R5S2U) to 5-substituted 2-selenouridine (R5Se2U) at the wobble positions of several tRNAs. Seleno-modification potentially regulates translation efficiency in response to selenium availability. Notably, SelU uses the 2-geranylthiouridine (R5geS2U) intermediate for sulfur removal, and this geranylthiol (geS) is a unique leaving group among tRNA-maturation enzymes.

View Article and Find Full Text PDF

A series of chiral hybrid diphosphorus ligands incorporating a conformationally flexible tropos diphenylmethane-based phosphoramidite unit have been developed and evaluated in the Rh-catalyzed asymmetric hydrogenation of 2-(1-arylvinyl)anilides and α-enamides, leading to up to >99% yield and 99% enantiomeric excess. Preliminary results from comparative studies showcased the extraordinary catalytic performance of these chiral tropos phosphine-phosphoramidite ligands, with a competency essentially superior to those of well-established ligands with a regular rigid backbone.

View Article and Find Full Text PDF

Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!