Ovaries are among the most active organs. Frequently occurring events such as ovulation and ovarian atresia are accompanied with tissue destruction and repairing. Critical roles of immune cells or molecules in those events have been well recognized. IL-33 is a new member of the IL-1 cytokine gene family. Recent studies suggest its roles beyond immune responses. We systemically examined its expression in ovaries for its potential roles in ovarian functions. During ovulation, a high level of IL-33 was transiently expressed, making it the most significantly upregulated immune gene. During estrous cycle, IL-33 expression levels fluctuated along with numbers of ovarian macrophages and atresia wave. Cells with nuclear form of IL-33 (nIL-33(+) cells) were mostly endothelial cells of veins, either in the inner layer of theca of ovulating follicles during ovulation, or surrounding follicles during estrous cycle. Changes in number of nIL-33(+) cells showed a tendency similar to that in IL-33 mRNA level during estrous cycle. However, the cell number sharply declined before a rapid increase of macrophages and a surge of atresia. The decline in nIL-33(+) cell number was coincident with detection of higher level of the cytokine form of IL-33 by Western blot, suggesting a release of cytokine form of IL-33 before the surge of macrophage migration and atresia. However, IL-33 Ab, either by passive transfer or immunization, showed a limited effect on ovulation or atresia. It raises a possibility of IL-33's role in tissue homeostasis after ovarian events, instead of a direct involvement in ovarian functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4084839PMC
http://dx.doi.org/10.4049/jimmunol.1400381DOI Listing

Publication Analysis

Top Keywords

estrous cycle
16
form il-33
12
il-33
9
tissue homeostasis
8
roles immune
8
ovarian functions
8
nil-33+ cells
8
cell number
8
cytokine form
8
ovarian
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!