Genetic regulation of mouse liver metabolite levels.

Mol Syst Biol

Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA, USA Department of Human Genetics, UCLA, Los Angeles, CA, USA

Published: May 2014

We profiled and analyzed 283 metabolites representing eight major classes of molecules including Lipids, Carbohydrates, Amino Acids, Peptides, Xenobiotics, Vitamins and Cofactors, Energy Metabolism, and Nucleotides in mouse liver of 104 inbred and recombinant inbred strains. We find that metabolites exhibit a wide range of variation, as has been previously observed with metabolites in blood serum. Using genome-wide association analysis, we mapped 40% of the quantified metabolites to at least one locus in the genome and for 75% of the loci mapped we identified at least one candidate gene by local expression QTL analysis of the transcripts. Moreover, we validated 2 of 3 of the significant loci examined by adenoviral overexpression of the genes in mice. In our GWAS results, we find that at significant loci the peak markers explained on average between 20 and 40% of variation in the metabolites. Moreover, 39% of loci found to be regulating liver metabolites in mice were also found in human GWAS results for serum metabolites, providing support for similarity in genetic regulation of metabolites between mice and human. We also integrated the metabolomic data with transcriptomic and clinical phenotypic data to evaluate the extent of co-variation across various biological scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188043PMC
http://dx.doi.org/10.15252/msb.20135004DOI Listing

Publication Analysis

Top Keywords

genetic regulation
8
mouse liver
8
metabolites
8
metabolites mice
8
mice human
8
regulation mouse
4
liver metabolite
4
metabolite levels
4
levels profiled
4
profiled analyzed
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

The role of genetic diversity, epigenetic regulation, and sex-based differences in HIV cure research: a comprehensive review.

Epigenetics Chromatin

January 2025

Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.

Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.

Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!