AI Article Synopsis

  • The study explores how glucagon-like peptide-1 (GLP-1) affects the proliferation and cell cycle of pancreatic β-cells when exposed to intermittent high glucose levels.
  • INS-1 cells were treated with various glucose concentrations and GLP-1, revealing that those treated with intermittent high glucose and GLP-1 showed a significant increase in cell proliferation and decreased proportion in the G0/G1 cell cycle phase.
  • The findings suggest that GLP-1 facilitates cell cycle progression by increasing cyclin D1 and Skp2 levels while decreasing p21 and p27, thereby promoting insulin-secreting β-cell growth under high glucose stress.

Article Abstract

Glucagon-like peptide-1 (GLP-1) and its analog exendin (EX)-4 have been considered to promote β-cell growth and expansion. In the present, study we investigated the effect of GLP-1 on proliferative activity and cell cycle regulation in the pancreatic insulin-secreting β-cell line, INS-1, treated with intermittent high glucose. INS-1 cells were treated with normal glucose (5.5 mmol/l), constant high glucose (30 mmol/l) and intermittent high glucose (rotation/24 h in 5.5 or 30 mmol/l) in the presence or absence of GLP-1 (100 nmol/l) for seven days. Proliferative activity, cell cycle and the expression of cyclin D1, p21, p27 and Skp2 were examined. INS-1 treated with intermittent high glucose and GLP-1 demonstrated a significant increase in proliferation activity (1.45±0.12; P<0.01) and decreased cell proportion in G0/G1 phase (49.73±4.04%, P<0.01) compared with those without GLP-1. Furthermore, the expression levels of cyclin D1 and Skp2 were increased, while the expression of p27 and p21 were significantly reduced. Similar results were identified in those treated with constant high glucose and GLP-1. These results suggest that GLP-1 may ease the G0/G1 cell cycle arrest of INS-1 cells induced by intermittent high glucose by upregulating the expression of cyclin D1 and Skp2, downregulating the expression of p21 and p27, and finally promoting the cell cycle progression and proliferation activity.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2014.2265DOI Listing

Publication Analysis

Top Keywords

high glucose
20
intermittent high
16
proliferation activity
8
ins-1 cells
8
proliferative activity
8
activity cell
8
cell cycle
8
ins-1 treated
8
treated intermittent
8
glucose
6

Similar Publications

Introduction: Knowing the magnitude and preventable risk factors of diabetes has a significant contribution in targeted prevention intervention which ultimately ensures the existence of healthier and productive individuals in a country. Diabetes has untoward impact on health, social and economic consequences. Exploring preventable risk factors are extremely important because of their potential association and interaction with diabetes.

View Article and Find Full Text PDF

Purpose: Several studies suggest a linkage between PCOS and autoimmunity with a high frequency of chronic autoimmune thyroiditis (AIT) reported in PCOS patients, however, this subject remains controversial. The aim of this study was to investigate the prevalence of AIT in PCOS women and identify parameters that would serve as independent predictors of AIT.

Methods: Two hundred fifty seven (257) PCOS patients according to the NIH criteria and one hundred forty three (143) controls, women with normal menstrual cycles and without clinical or biochemical hyperandrogenism, were recruited for the study.

View Article and Find Full Text PDF

Purpose: Women with gestational diabetes (GDM) have increased risk of hypertensive disorders in pregnancy (HDP). However, knowledge remains limited for women with high-risk metabolic profiles, regardless of GDM diagnosis. This study aimed to evaluate the prevalence of HDP among women at high risk for GDM, while simultaneously identifying potential predictive clinical risk factors of HDP.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

Puerarin Attenuates Podocyte Damage in Mice With Diabetic Kidney Disease by Modulating the AMPK/Nrf2 Pathway.

Int J Endocrinol

January 2025

Nephrology Department, Jiangxi Provincial Key Research Laboratory of Traditional Chinese Medicine, Key Research Laboratory of Chronic Renal Failure, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China.

This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!