A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glyco-variant library of the versatile enzyme horseradish peroxidase. | LitMetric

Glyco-variant library of the versatile enzyme horseradish peroxidase.

Glycobiology

Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna 1060, Austria

Published: September 2014

When the glycosylated plant enzyme horseradish peroxidase (HRP) is conjugated to specific antibodies, it presents a powerful tool for medical applications. The isolation and purification of this enzyme from plant is difficult and only gives low yields. However, HRP recombinantly produced in the yeast Pichia pastoris experiences hyperglycosylation, which impedes the use of this enzyme in medicine. Enzymatic and chemical deglycosylation are cost intensive and cumbersome and hitherto existing P. pastoris strain engineering approaches with the goal to avoid hyperglycosylation only resulted in physiologically impaired yeast strains not useful for protein production processes. Thus, the last resort to obtain less glycosylated recombinant HRP from P. pastoris is to engineer the enzyme itself. In the present study, we mutated all the eight N-glycosylation sites of HRP C1A. After determination of the most suitable mutation at each N-glycosylation site, we physiologically characterized the respective P. pastoris strains in the bioreactor and purified the produced HRP C1A glyco-variants. The biochemical characterization of the enzyme variants revealed great differences in catalytic activity and stability and allowed the combination of the most promising mutations to potentially give an unglycosylated, active HRP C1A variant useful for medical applications. Interestingly, site-directed mutagenesis proved to be a valuable strategy not only to reduce the overall glycan content of the recombinant enzyme but also to improve catalytic activity and stability. In the present study, we performed an integrated bioprocess covering strain generation, bioreactor cultivations, downstream processing and product characterization and present the biochemical data of the HRP glyco-library.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116046PMC
http://dx.doi.org/10.1093/glycob/cwu047DOI Listing

Publication Analysis

Top Keywords

hrp c1a
12
enzyme horseradish
8
horseradish peroxidase
8
medical applications
8
catalytic activity
8
activity stability
8
enzyme
7
hrp
7
glyco-variant library
4
library versatile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!