The production of silver nanoparticles has reached nowadays high levels. Bioconcentration studies, information on persistence and toxicity are fundamental to assess their global risk and thus necessary to establish legislations regarding their use. Previous studies on silver nanoparticle toxicity have determined a clear correlation between their chemical stability and toxicity. In this work, experimental conditions able to assure silver nanoparticles stability have been optimized. Then, zebrafish (Danio rerio) eleutheroembryos were exposed to ionic silver and to Ag NPs for comparison purposes. A protocol alternative to the OECD 305 technical guideline was used. To determine silver concentration in both the eleutheroembryos and the exposure media, an analytical method consisting in ultrasound assisted extraction, followed by inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry, was developed. Then, bioconcentration factors were calculated. The results revealed that ionic silver was more accumulative for zebrafish eleutheroembryos than nanoparticles at the levels tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2014.04.020 | DOI Listing |
Antibiotics (Basel)
December 2024
Faculty of Natural Science, Pavol Jozef Safarik University in Kosice, Srobarova 2, 041 54 Kosice, Slovakia.
Introduction: Silver nanoparticles (AgNPs) are widely utilized for their exceptional antimicrobial properties, but concerns persist regarding their environmental impacts, particularly in soil and water ecosystems. This study compared the effects of chemically and biologically synthesized AgNPs and ionic silver on bacterial communities commonly present in soil and the proliferation of antibiotic resistance in the soil ecosystem.
Results And Discussion: Biologically synthesized AgNPs exhibited the strongest antimicrobial activity, significantly reducing bacterial populations within a day, and demonstrated minimal impacts on the development of antibiotic resistance in long-term.
Sci Rep
January 2025
Faculty of Marine Engineering, Gdynia Maritime University, Morska 81-87, 81-225, Gdynia, Poland.
This paper presents the effect of environmentally friendly additives on selected parameters and microbial degradation of Marine Diesel Oil (MDO). Microbiological contamination is a serious problem in MDO and other petroleum products. For this reason, it was decided to investigate the effects of environmentally friendly additives such as silver solution and colloidal nanosilver, as well as effective liquid microorganisms and ceramic tubes with different percentages of them in diesel oil (MDO) on its selected parameters and inhibition of bacterial and fungal growth.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India. Electronic address:
Sensing of amino acid serves as the frontier research area for early diagnosis and monitoring various diseases. Among various amino acids, the sensing of L-Cysteine is much important for detection of human diseases like neurotoxic effect and coronary heart disease which arises due to excess of L-Cysteine. To address this, we propose a very simple method of L-Cys sensing via fluorescence "TURN ON" mechanism involving silver centred Rhodamine B nanogranules (AgNPs/RhB) stabilized via electrostatic interaction.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Silver-based fast ionic conductors show promising potential in thermoelectric applications. Among these, AgS offers unique high plasticity but low electrical conductivity, whereas AgTe exhibits high intrinsic electrical conductivity yet faces limitations due to high thermal conductivity and poor plasticity. Developing a composite thermoelectric material that combines the benefits of both is therefore essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!