Structural characterization and interaction of periostin and bone morphogenetic protein for regulation of collagen cross-linking.

Biochem Biophys Res Commun

Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea. Electronic address:

Published: July 2014

Periostin appears to be a unique extracellular protein secreted by fibroblasts that is upregulated following injury to the heart or changes in the environment. Periostin has the ability to associate with other critical extracellular matrix (ECM) regulators such as TGF-β, tenascin, and fibronectin, and is a critical regulator of fibrosis that functions by altering the deposition and attachment of collagen. Periostin is known to be highly expressed in carcinoma cells, but not in normal breast tissues. The protein has a structural similarity to insect fasciclin-1 (Fas 1) and can be induced by transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP)-2. To investigate the molecular interaction of periostin and bone morphogenetic protein, we modeled these three-dimensional structures and their binding sites. We demonstrated direct interaction between periostin and BMP1/2 in vitro using several biochemical and biophysical assays. We found that the structures of the first, second, and fourth Fas1 domains in periostin are similar to that of the fourth Fas 1 domain of TGFBIp. However, the structure of the third Fas 1 domain in periostin is different from those of the first, second, and fourth Fas1 domains, while it is similar to the NMR structure of Fasciclin-like protein from Rhodobacter sphaeroides. These results will useful in further functional analysis of the interaction of periostin and bone morphogenetic protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.05.055DOI Listing

Publication Analysis

Top Keywords

interaction periostin
16
bone morphogenetic
16
morphogenetic protein
16
periostin bone
12
periostin
9
second fourth
8
fourth fas1
8
fas1 domains
8
fas domain
8
protein
7

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) characterized by an abundant cancer stroma is an aggressive malignancy with a poor prognosis. Periostin (Pn) is a key extracellular matrix (ECM) protein in various tumor progression. Previously, we described the role of Pn alternative splicing variants (ASVs) with specific functional features in breast cancer.

View Article and Find Full Text PDF

The roles of periostin derived from cancer-associated fibroblasts in tumor progression and treatment response.

Cancer Metastasis Rev

November 2024

Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas, Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, CEP 57309-005, Brazil.

Periostin (POSTN), a matricellular protein predominantly secreted by cancer-associated fibroblasts (CAFs), has emerged as a key regulator of cancer progression and therapy response. This review provides an overview of recent findings regarding the diverse roles of periostin in cancer therapy and its potential as a therapeutic target. Studies have elucidated periostin's involvement in tumorigenesis, including tumor growth, metastasis, chemotherapy resistance, and modulation of the tumor microenvironment (TME).

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a major constituent of the tumor microenvironment, acting as a mediator that supports the progression of gastrointestinal (GI) cancers, particularly in mesenchymal subtypes. Beyond providing structural support, the ECM actively shapes the tumor microenvironment (TME) through complex biochemical and biomechanical remodeling. Dysregulation of ECM composition and signaling is closely linked to increased cancer aggressiveness, poor prognosis, and resistance to therapy.

View Article and Find Full Text PDF

Advances in the Regulation of Periostin for Osteoarthritic Cartilage Repair Applications.

Biomolecules

November 2024

Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada.

Article Synopsis
  • - The study investigates the role of periostin (POSTN) in osteoarthritis (OA), finding it is increased in patients and linked to inflammation and cartilage breakdown, suggesting it could be a target for therapy.
  • - Link N (LN), a peptide from link protein, is shown to have anabolic properties and can reduce inflammation and degradation in cartilage, leading the researchers to explore its effects on POSTN expression.
  • - Experimental results reveal that LN can decrease POSTN expression and disrupt its signaling in chondrocytes, indicating it has potential as a therapeutic agent in treating OA by targeting POSTN.
View Article and Find Full Text PDF

Periostin Induces Epithelial-Mesenchymal Transition via p38-MAPK Pathway in Human Renal Tubular Cells by High Glucose.

Immun Inflamm Dis

November 2024

Department of Nephrology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.

Background: Periostin mediates inflammation and fibrosis by regulating extracellular matrix adhesion, migration, and differentiation in multiple organ diseases. Studies have shown periostin mainly located in the dilated mesangium, tubulointerstitial and fibrotic regions of the diabetic kidney disease, which was negatively correlated with renal function. However, the underlying mechanism remains poorly explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!