Periostin appears to be a unique extracellular protein secreted by fibroblasts that is upregulated following injury to the heart or changes in the environment. Periostin has the ability to associate with other critical extracellular matrix (ECM) regulators such as TGF-β, tenascin, and fibronectin, and is a critical regulator of fibrosis that functions by altering the deposition and attachment of collagen. Periostin is known to be highly expressed in carcinoma cells, but not in normal breast tissues. The protein has a structural similarity to insect fasciclin-1 (Fas 1) and can be induced by transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP)-2. To investigate the molecular interaction of periostin and bone morphogenetic protein, we modeled these three-dimensional structures and their binding sites. We demonstrated direct interaction between periostin and BMP1/2 in vitro using several biochemical and biophysical assays. We found that the structures of the first, second, and fourth Fas1 domains in periostin are similar to that of the fourth Fas 1 domain of TGFBIp. However, the structure of the third Fas 1 domain in periostin is different from those of the first, second, and fourth Fas1 domains, while it is similar to the NMR structure of Fasciclin-like protein from Rhodobacter sphaeroides. These results will useful in further functional analysis of the interaction of periostin and bone morphogenetic protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2014.05.055 | DOI Listing |
Int J Mol Sci
December 2024
Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
Pancreatic ductal adenocarcinoma (PDAC) characterized by an abundant cancer stroma is an aggressive malignancy with a poor prognosis. Periostin (Pn) is a key extracellular matrix (ECM) protein in various tumor progression. Previously, we described the role of Pn alternative splicing variants (ASVs) with specific functional features in breast cancer.
View Article and Find Full Text PDFCancer Metastasis Rev
November 2024
Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas, Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, CEP 57309-005, Brazil.
Periostin (POSTN), a matricellular protein predominantly secreted by cancer-associated fibroblasts (CAFs), has emerged as a key regulator of cancer progression and therapy response. This review provides an overview of recent findings regarding the diverse roles of periostin in cancer therapy and its potential as a therapeutic target. Studies have elucidated periostin's involvement in tumorigenesis, including tumor growth, metastasis, chemotherapy resistance, and modulation of the tumor microenvironment (TME).
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
November 2024
Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:
The extracellular matrix (ECM) is a major constituent of the tumor microenvironment, acting as a mediator that supports the progression of gastrointestinal (GI) cancers, particularly in mesenchymal subtypes. Beyond providing structural support, the ECM actively shapes the tumor microenvironment (TME) through complex biochemical and biomechanical remodeling. Dysregulation of ECM composition and signaling is closely linked to increased cancer aggressiveness, poor prognosis, and resistance to therapy.
View Article and Find Full Text PDFBiomolecules
November 2024
Department of Surgical and Interventional Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada.
Immun Inflamm Dis
November 2024
Department of Nephrology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
Background: Periostin mediates inflammation and fibrosis by regulating extracellular matrix adhesion, migration, and differentiation in multiple organ diseases. Studies have shown periostin mainly located in the dilated mesangium, tubulointerstitial and fibrotic regions of the diabetic kidney disease, which was negatively correlated with renal function. However, the underlying mechanism remains poorly explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!