Bionanoconjugation for proteomics applications - An overview.

Biotechnol Adv

Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Published: March 2015

Formed as an interdisciplinary domain on the basis of Human Genome Project, Proteomics aims at the large-scale study of proteins. The enthusiasm that resulted from obtaining the complete human genetic information has, however, been chastened by the realization that this information contributes little to the comprehension and knowledge of the expressed proteins. In the wake of this realization, the Human Proteome Project (HUPO) was founded, which is a global, collaborative initiative, aiming at the complete characterization of the proteins of all protein-coding genes. Nonetheless, the rapid detection of these molecules in complex biological samples under conditions considered to be of clinical relevance is extremely difficult, requiring the development of very sensitive, robust, reproducible and high throughput platforms. Nanoproteomics has emerged as a feasible, promising option, offering short assay times, low sample consumption, ultralow detection and high throughput capacity. Additionally, the successful synthesis of biomolecules and nanoparticle hybrids yields systems which often exhibit new or improved features. Herein, we overview the recent advances in bioconjugation at the nanolevel and, specifically, their application in Proteomics, discussing not only the merits and prospects of Proteomics, but also present day limitations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2014.04.013DOI Listing

Publication Analysis

Top Keywords

high throughput
8
bionanoconjugation proteomics
4
proteomics applications
4
applications overview
4
overview formed
4
formed interdisciplinary
4
interdisciplinary domain
4
domain basis
4
basis human
4
human genome
4

Similar Publications

Seasonal Changes in the Gut Microbiota of Halyomorpha halys.

Microb Ecol

December 2024

Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.

The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world.

View Article and Find Full Text PDF

Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.

Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.

View Article and Find Full Text PDF

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Discovery of a Chimeric Polyketide Family as Cancer Immunogenic Chemotherapeutic Leads.

J Am Chem Soc

December 2024

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.

Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein, we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for the rapid identification of microbial natural products with both novel structures and potent activities.

View Article and Find Full Text PDF

YY1 drives PARP1 expression essential for PARylation of NONO in mRNA maturation during neuroblastoma progression.

J Transl Med

December 2024

Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.

Background: Neuroblastoma (NB), the most prevalent solid tumor in children, arises from sympathetic nervous system and accounts for 15% of pediatric cancer mortality. This malignancy exhibits substantial genetic and clinical heterogeneity, thus complicating treatment strategies. Poly(ADP-ribose) polymerase 1 (PARP1), a key enzyme catalyzing polyADP-ribosylation (PARylation), plays critical roles in various cellular processes, and contributes to tumorigenesis and aggressiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!