As part of a continuing search for new potential anticancer candidates, we describe the synthesis, cytotoxicity and mechanistic evaluation of a series of 4-oxoquinoline-3-carboxamide derivatives as novel anticancer agents. The inhibitory activity of compounds 10-18 was determined against three cancer cell lines using the MTT colorimetric assay. The screening revealed that derivatives 16b and 17b exhibited significant cytotoxic activity against the gastric cancer cell line but was not active against a normal cell line, in contrast to doxorubicin, a standard chemotherapeutic drug in clinical use. Interestingly, no hemolytical activity was observed when the toxicity of 16b and 17b was tested against blood cells. The in silico and in vitro mechanistic evaluation indicated the potential of 16b as a lead for the development of novel anticancer agents against gastric cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271384 | PMC |
http://dx.doi.org/10.3390/molecules19056651 | DOI Listing |
Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Alzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: The accumulation of amyloidogenic proteins is recognized as a primary biomarker, initiator of pathology, and a potential therapeutic target for Alzheimer's disease (AD). An unbiased screening of a small molecule library was conducted to identify new chemical compounds exhibiting amyloid-dissociative properties.
Method: The ability of aryloxypropanolamine derivatives to dissociate amyloid-β (Aβ) aggregates was evaluated through in vitro assays.
Lecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to amyloid-beta (Aβ) protofibrils, was formally evaluated as a treatment for early Alzheimer's disease in a phase 2 study (Study 201) and the phase 3 Clarity AD study. These trials both included an 18-month, randomized study (core) and an open-label extension (OLE) phase where eligible participants received open-label lecanemab for up to 30 months to date. Clinical (CDR-SB, ADAS-Cog14, and ADCS-MCI-ADL), biomarker (PET, Aβ42/40 ratio, and ptau181) and safety outcomes were evaluated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
Background: Dementia with Lewy bodies (DLB) is characterized by the accumulation of α-synuclein (α-syn) as well as Alzheimer's disease (AD) pathology, which includes the accumulation of amyloid beta (Aß) in plaques and phosphorylated tau in tangles, leading to neurodegeneration, cognitive loss and dementia. In DLB and other synucleinopathies, α-syn oligomers and proto-fibrils are thought to be mechanistically linked to the pathogenic neurodegenerative process. AD and related disorders (ADRD) are leading causes of dementia in the aging population and although new approaches are being tested, to date no disease-modifying therapies are available.
View Article and Find Full Text PDFLecanemab is a humanized IgG1 monoclonal antibody binding with high affinity to protofibrils of amyloid-beta (Aβ) protein. In 18-month clinical studies, lecanemab has been shown to reduce a complex group of protein interactions associated with early symptomatic Alzheimer's disease (AD) and slow decline on clinical endpoints of cognition and function for up to 30 months to date. In prior research, results from the phase 2 study gap period (no study drug treatment) between the end of the study core and the beginning of retreatment in the open-label extension (OLE) provides evidence regarding the need for continued maintenance therapy beyond 18 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!