Objective: To investigate the relevance of the human vertebral endplate poromechanics on the fluid and metabolic transport from and to the intervertebral disc (IVD) based on educated estimations of the poromechanical parameter values of the bony endplate (BEP).
Methods: 50 micro-models of different BEP samples were generated from μCTs of lumbar vertebrae and allowed direct determination of porosity values. Permeability values were calculated by using the micro-models, through the simulation of permeation via computational fluid dynamics. These educated ranges of porosity and permeability values were used as inputs for mechano-transport simulations to assess their effect on both the distributions of metabolites within an IVD model and the poromechanical calculations within the cartilaginous part of the endplate i.e., the cartilage endplate (CEP).
Results: BEP effective permeability was highly correlated to local variations of porosity (R(2) ≈ 0.88). Universal patterns between bone volume fraction and permeability arose from these results and from other experimental data in the literature. These variations in BEP permeability and porosity had negligible effects on the distributions of metabolites within the disc. In the CEP, the variability of the poromechanical properties of the BEP did not affect the predicted consolidation but induced higher fluid velocities.
Conclusions: The present paper provides the first sets of thoroughly identified BEP parameter values that can be further used in patient-specific poromechanical studies. Representing BEP structural changes through variations in poromechanical properties did not affect the diffusion of metabolites. However, attention might be paid to alterations in fluid velocities and cell mechano-sensing within the CEP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joca.2014.05.005 | DOI Listing |
Langmuir
February 2024
Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland.
Nanoporous adsorbents can mechanically swell or shrink once upon the accumulation of guest fluid molecules at their internal surfaces or in their cavities. Existing theories in this field attribute such sorption-induced swelling to a tensile force, while shrinkage is always associated with a contractive force. In this study, however, we propose that the sorption-induced deformation of a porous architecture is not solely dictated by the stress conditions but can also be largely influenced by its mechanical anisotropy.
View Article and Find Full Text PDFSci Rep
December 2023
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, 07190, Esporles, Spain.
Reservoir-triggered seismicity commonly occurs as a result of reservoir impoundment. In particular, the Nova Ponte reservoir triggered a series of earthquakes, including the 1998 M4.0 earthquake, which represents the second-largest earthquake triggered by reservoir impoundment in Brazil.
View Article and Find Full Text PDFSci Rep
December 2023
Research Division, ExxonMobil Technology and Engineering Co., Annandale, NJ, 08801, USA.
The poromechanical properties of unconventional reservoir materials are in large part dictated by their mineralogy. Since these properties govern the response to stress experienced during hydraulic fracturing, fluid production, and fluid injection, they play a central role in the formation of microcracks or bedding delaminations which ultimately dominate mass transport. In this work we study access to the porosity of end member unconventional reservoir materials, where the end members are predominantly dictated by carbonate content.
View Article and Find Full Text PDFJ Biol Eng
August 2023
Center of Excellence in Electromagnetic Energy Utilization in Engineering (C.E.E.E.), Department of Mechanical Engineering, Faculty of Engineering, Thammasat University, Pathumthani, Thailand.
Radiofrequency Cardiac Ablation (RFCA) is a common procedure that heats cardiac tissue to destroy abnormal signal pathways to eliminate arrhythmias. The complex multiphysics phenomena during this procedure need to be better understood to improve both procedure and device design. A deformable poromechanical model of cardiac tissue was developed that coupled joule heating from the electrode, heat transfer, and blood flow from normal perfusion and thermally driven natural convection, which mimics the real tissue structure more closely and provides more realistic results compared to previous models.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
June 2023
Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada. Electronic address:
Knee cartilage experiences site-specific focal lesion and degeneration, which is likely associated with tissue inhomogeneity and nonuniform mechanical stimuli in the joint, for which a complete picture remains to be depicted. The present study aimed to develop a methodology to quantify knee cartilage inhomogeneity using porcine knee specimens. Automated indentation-relaxation and needle probing were performed on fully intact cartilage to obtain data that essentially represent continuous distributions of cartilage properties in the knee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!