Construction of the eukaryotic ribosome begins in the nucleolus and requires >300 evolutionarily conserved nonribosomal trans-acting factors, which transiently associate with preribosomal subunits at distinct assembly stages. A subset of trans-acting and transport factors passage assembled preribosomal subunits in a functionally inactive state through the nuclear pore complexes (NPC) into the cytoplasm, where they undergo final maturation before initiating translation. Here, we summarize the repertoire of tools developed in the model organism budding yeast that are spearheading the functional analyses of trans-acting factors involved in the assembly and intracellular transport of preribosomal subunits. We elaborate on different GFP-tagged ribosomal protein reporters and a pre-rRNA reporter that reliably monitors the movement of preribosomal particles from the nucleolus to cytoplasm. We discuss the powerful yeast heterokaryon assay, which can be employed to uncover shuttling trans-acting factors that need to accompany preribosomal subunits to the cytoplasm to be released prior to initiating translation. Moreover, we present two biochemical approaches, namely sucrose gradient analyses and tandem affinity purification, that are rapidly facilitating the uncovering of regulatory processes that control the compositional dynamics of trans-acting factors on maturing preribosomal particles. Altogether, these approaches when combined with traditional analytical biochemistry, targeted proteomics and structural methodologies, will contribute to the dissection of the assembly and intracellular transport of preribosomal subunits, as well as other macromolecular assemblies that influence diverse biological pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-417160-2.00020-5 | DOI Listing |
Nat Commun
November 2024
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Integrated Structural Biology Department, Illkirch, France.
The ribosome maturation factor Rea1 (or Midasin) catalyses the removal of assembly factors from large ribosomal subunit precursors and promotes their export from the nucleus to the cytosol. Rea1 consists of nearly 5000 amino-acid residues and belongs to the AAA+ protein family. It consists of a ring of six AAA+ domains from which the ≈1700 amino-acid residue linker emerges that is subdivided into stem, middle and top domains.
View Article and Find Full Text PDFNat Commun
August 2024
Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast.
View Article and Find Full Text PDFbioRxiv
June 2024
Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States.
KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark.
View Article and Find Full Text PDFAnnu Rev Biochem
August 2024
Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York, USA;
During the last ten years, developments in cryo-electron microscopy have transformed our understanding of eukaryotic ribosome assembly. As a result, the field has advanced from a list of the vast array of ribosome assembly factors toward an emerging molecular movie in which individual frames are represented by structures of stable ribosome assembly intermediates with complementary biochemical and genetic data. In this review, we discuss the mechanisms driving the assembly of yeast and human small and large ribosomal subunits.
View Article and Find Full Text PDFHistochem Cell Biol
July 2024
Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!