Human mesenchymal stromal cells (hMSCs) show great potential for clinical and experimental use due to their capacity to self-renew and differentiate into multiple mesenchymal lineages. However, disadvantages of primary cultures of hMSCs are the limited in vitro lifespan, and the variable properties of cells from different donors and over time in culture. In this article, we describe the generation of a telomerase-immortalized nontumorigenic human bone marrow-derived stromal mesenchymal cell line, and its detailed characterization after long-term culturing (up to 155 population doublings). The resulting cell line, iMSC#3, maintained a fibroblast-like phenotype comparable to early passages of primary hMSCs, and showed no major differences from hMSCs regarding surface marker expression. Furthermore, iMSC#3 had a normal karyotype, and high-resolution array comparative genomic hybridization confirmed normal copy numbers. The gene expression profiles of immortalized and primary hMSCs were also similar, whereas the corresponding DNA methylation profiles were more diverse. The cells also had proliferation characteristics comparable to primary hMSCs and maintained the capacity to differentiate into osteoblasts and adipocytes. A detailed characterization of the mRNA and microRNA transcriptomes during adipocyte differentiation also showed that the iMSC#3 recapitulates this process at the molecular level. In summary, the immortalized mesenchymal cells represent a valuable model system that can be used for studies of candidate genes and their role in differentiation or oncogenic transformation, and basic studies of mesenchymal biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172386PMC
http://dx.doi.org/10.1089/scd.2013.0599DOI Listing

Publication Analysis

Top Keywords

primary hmscs
12
human mesenchymal
8
mesenchymal stromal
8
detailed characterization
8
mesenchymal
6
hmscs
6
generation characterization
4
characterization immortalized
4
immortalized human
4
stromal cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!