Antifungal resistance and toxicity problems of conventional fungicides highlighted the requirement of search for new safe antifungal agents. To comply with the requirement, we discovered four new non-cytotoxic lipopeptides, gageopeptides A-D, 1-4, from a marine-derived bacterium Bacillus subtilis. The structures and stereochemistry of gageopeptides were determined by NMR data analysis and chemical means. Gageopeptides exhibited significant antifungal activities against pathogenic fungi Rhizoctonia solani, Botrytis cinerea, and Colletotrichum acutatum with minimum inhibitory concentration (MIC) values of 0.02-0.06 μM. In addition, these lipopeptides showed significant motility inhibition and lytic activities against zoospores of the late blight pathogen Phytophthora capsici. These compounds also showed potent antimicrobial activity against Gram positive and Gram negative bacteria with MIC values of 0.04-0.08 μM. However, gageopeptides A-D did not exhibit any cytotoxicity (GI50 > 25 μM) against cancer cell lines in sulforhodamine B (SRB), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and WST-1 ((4-[3-4-iodophenyl]-2-(4-nitrophenyl)-2H-5-tetrazolio)-1,3-benzene disulfonate)) assays, demonstrating that these compounds could be promising candidates for the development of non-cytotoxic antifungal agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf502436r | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Blue rubber bleb nevus syndrome (BRBNS) is a rare congenital clinical syndrome characterized by venous malformations in multiple organs, including the skin, gastrointestinal tract, liver, and lungs. In June 2022, Third Xiangya Hospital of Central South University admitted a rare case of BRBNS. The patient was hospitalized due to abdominal distension and a history of recurrent hematochezia.
View Article and Find Full Text PDFJ Appl Oral Sci
March 2025
Universidade Federal do Piauí, Programa de Pós-Graduação em Odontologia (PPGO), Teresina, Piauí, Brasil.
Background: This article is derived from Irisvaldo Lima Guedes's Master's dissertation and is available at the address: https://sigaa.ufpi.br/sigaa/public/programa/noticias_desc.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy.
Reptiles may act as reservoirs or spreaders of potential pathogenic microorganisms including Candida yeasts. While the epidemiology of yeast species has been thoroughly studied, the virulence profile of isolated species is not well investigated. Therefore, this study aimed to assess the haemolytic, phospholipase, lipase activities and biofilm formation of yeasts isolated from the cloacal swabs of venomous snakes from Marrakech, Morocco (Group I, n = 40) and from non-venomous snakes from Cocullo, Italy (Group II, n = 32).
View Article and Find Full Text PDFMycoses
March 2025
Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway.
Background: Candida auris is an emerging fungal pathogen that is often multidrug-resistant. It can persist on skin and in hospital environments, leading to outbreaks and severe infections for patients at risk. Several countries and institutions are working on establishing guidelines and recommendations for prevention.
View Article and Find Full Text PDFCells
February 2025
Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju-gun 55365, Jeonbuk-do, Republic of Korea.
Insulin resistance (IR) disrupts hepatic glucose metabolism and mitochondrial function, which contributes to metabolic disorders. The present study examined the effects of tomatine on glucose metabolism in high-glucose-induced IR hepatocytes and explored its underlying mechanisms using AML12 and HepG2 cell models. The results showed that tomatine did not exhibit cytotoxic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!