Recently, we demonstrated that human serum amyloid P component (SAP) specifically recognizes exposed bacterial peptidoglycan (PGN) of wall teichoic acid (WTA)-deficient Staphylococcus aureus ΔtagO mutant cells and then induces complement-independent phagocytosis. In our preliminary experiments, we found the existence of human serum immunoglobulins that recognize S. aureus PGN (anti-PGNIgGs), which may be involved in complement-dependent opsonophagocytosis against infected S. aureus cells. We assumed that purified serum anti-PGN-IgGs and S. aureus ΔtagO mutant cells are good tools to study the molecular mechanism of anti-PGN-IgG-mediated phagocytosis. Therefore, we tried to identify the intracellular molecule(s) that is involved in the anti-PGN-IgG-mediated phagocytosis using purified human serum anti-PGN-IgGs and different S. aureus mutant cells. Here, we show that anti-PGN-IgG-mediated phagocytosis in phorbol myristate acetate-treated U937 cells is mediated by Ca2(+) release from intracellular Ca2(+) stores and anti-PGN-IgG dependent Ca2(+) mobilization is controlled via a phospholipase Cγ-2-mediated pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345640 | PMC |
http://dx.doi.org/10.5483/bmbrep.2015.48.1.080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!