We report a random delayed-choice quantum eraser experiment. In a Young's double-slit interferometer, the which-slit information is learned from the photon-number fluctuation correlation of thermal light. The reappeared interference indicates that the which-slit information of a photon, or wave packet, can be "erased" by a second photon or wave packet, even after the annihilation of the first. Different from an entangled photon pair, the jointly measured two photons, or wave packets, are just two randomly distributed and randomly created photons of a thermal source that fall into the coincidence time window. The experimental observation can be explained as a nonlocal interference phenomenon in which a random photon or wave packet pair, interferes with the pair itself at distance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.180401 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical and Computer Engineering, Intelligent Wave Systems Laboratory, Seoul National University, Seoul, 08826, Korea.
Phys Rev Lett
December 2024
Departement de Physique Theorique, Universite de Geneve, 24 quai Ernest Ansermet, 1211 Geneve 4, Switzerland.
Phys Rev Lett
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
Nano Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!