A new competitive-type immunosensing system based on gold nanoparticles toward catalytic reduction of 4-nitrophenol (4-NP) was developed for sensitive monitoring of antibiotic residue (chloramphenicol, CAP, used in this case) by using ultraviolet-visible (UV-vis) spectrometry. Gold nanoparticle (AuNP) with 16 nm in diameter was initially synthesized and functionalized with CAP-bovine serum albumin (CAP-BSA) conjugate, which were used as the competitor on monoclonal anti-CAP antibody-coated polystyrene microtiter plate (MTP). In the presence of target CAP, the labeled CAP-BSA on the AuNP competed with target CAP for the immobilized antibody on the MTP. The conjugated amount of CAP-BSA-AuNP on the MTP decreased with the increase of target CAP in the sample. Upon addition of 4-NP and NaBH4 into the MTP, the carried AuNP could catalytically reduce 4-NP to 4-aminophenol (4-AP), and the as-produced 4-AP could be monitored by using UV-vis absorption spectroscopy. Experimental results indicated that the absorbance at 403 nm increased with the increment of target CAP concentration in the sample, and exhibited a dynamic range from 0.1 to 100 ng mL(-1) with a detection limit (LOD) of 0.03 ng mL(-1) at the 3s(blank) level. Intra- and inter-assay coefficients of variation were lower than 5.5% and 8.0%, respectively. In addition, the methodology was evaluated for CAP spiked honey and milk samples, respectively. The recovery was 92-112%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2014.04.051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!