Amyloid-beta induced neurotoxicity has been identified as a major cause of Alzheimer's disease. Acorus tatarinowii Schott is one of the most frequently used Chinese herbs for Alzheimer's disease treatment. However, the effects of Acorus tatarinowii Schott on amyloid-beta mediated nerve cell damage remains unknown. In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of A. tatarinowii Schott extract (ATSE) against Abeta25-35 induced neurotoxicity. The results showed pretreatment with ATSE significantly protected PC12 cells from Abeta25-35 induced cell death, lactate dehydrogenase release, DNA damage, mitochondrial dysfunction and cytochrome c release from mitochondria. In addition, pretreatment with ATSE also significantly inhibited Abeta25-35 induced caspase-3 activation and reactive oxygen species generation in PC12 cells. These observations suggested that ATSE protects PC12 cells from amyloid-beta induced neurotoxicity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pc12 cells
20
tatarinowii schott
16
induced neurotoxicity
16
acorus tatarinowii
12
amyloid-beta induced
12
abeta25-35 induced
12
schott extract
8
protects pc12
8
cells amyloid-beta
8
alzheimer's disease
8

Similar Publications

Despite the worldwide prevalence of Parkinson's disease (PD), there are currently no effective methods for treating or preventing α-synucleinopathy. Research has demonstrated that small molecules are capable of preventing α-synuclein aggregation and the associated neurotoxicity. Nonetheless, the specific anti-amyloid mechanism of these compounds is not thoroughly comprehended in detail.

View Article and Find Full Text PDF

Purpose: The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia.

Methods: Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method.

View Article and Find Full Text PDF

Nowadays, extracellular vesicles (EVs) such as exosomes participate in cell-cell communication and gain attention as a new approach for cell-free therapies. Recently, various studies have demonstrated the therapeutic ability of exosomes, while the biological effect of human endometrial stem cell (hEnSC)-derived small EVs such as exosomes is still unclear. Herein, we obtained small EVs from hEnSC and indicated that these small EVs activate the vital cell signaling pathway and progress neurite outgrowth in PC-12 cell lines.

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!