Background/aims: Moderate maternal calorie-restriction during gestation programmes offspring for a major propensity to develop metabolic alterations in adulthood. We aimed to assess whether increased hepatic fatty-acid oxidation (FAO), at early ages, by gene transfer of Cpt1am (active mutant of carnitine palmitoyltransferase-1a), may be a strategy for reversing metabolic disturbances associated to maternal calorie-restriction during gestation in rats.
Methods: AAV-Gfp (control) and AAV-Cpt1am vectors were administered by tail vein injection in 18-day-old control-pups and the offspring of 20% calorie-restricted rats during gestation (CR). After weaning, animals were fed with normal-fat diet. At the age of 4 months, they were moved to HF-diet and sacrificed at the age of 6 months to collect tissues. Locomotive activity, energy expenditure and blood pressure were measured.
Results: Under HF-diet, CR-animals showed higher HOMA-IR, adipocyte diameter and hepatic triglyceride accumulation than controls; these alterations were reverted in Cpt1am-injected animals. In liver, this treatment ameliorated inflammatory state, decreased expression of lipogenesis-related genes and partially restored the decreased expression of leptin-receptor occurring in CR-animals. Treatment also reverted the decreased energy expenditure and the increased blood pressure of CR-animals.
Conclusion: Increasing hepatic FAO through AAV-Cpt1am injection at juvenile ages prevents some metabolic disorders associated to gestational maternal calorie-restriction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000358714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!