Scabies is an infectious skin disease caused by the mite Sarcoptes scabiei and has been classified as one of the six most prevalent epidermal parasitic skin diseases infecting populations living in poverty by the World Health Organisation. The role of the complement system, a pivotal component of human innate immunity, as an important defence against invading pathogens has been well documented and many parasites have an arsenal of anti-complement defences. We previously reported on a family of scabies mite proteolytically inactive serine protease paralogues (SMIPP-Ss) thought to be implicated in host defence evasion. We have since shown that two family members, SMIPP-S D1 and I1 have the ability to bind the human complement components C1q, mannose binding lectin (MBL) and properdin and are capable of inhibiting all three human complement pathways. This investigation focused on inhibition of the lectin pathway of complement activation as it is likely to be the primary pathway affecting scabies mites. Activation of the lectin pathway relies on the activation of MBL, and as SMIPP-S D1 and I1 have previously been shown to bind MBL, the nature of this interaction was examined using binding and mutagenesis studies. SMIPP-S D1 bound MBL in complex with MBL-associated serine proteases (MASPs) and released the MASP-2 enzyme from the complex. SMIPP-S I1 was also able to bind MBL in complex with MASPs, but MASP-1 and MASP-2 remained in the complex. Despite these differences in mechanism, both molecules inhibited activation of complement components downstream of MBL. Mutagenesis studies revealed that both SMIPP-Ss used an alternative site of the molecule from the residual active site region to inhibit the lectin pathway. We propose that SMIPP-Ss are potent lectin pathway inhibitors and that this mechanism represents an important tool in the immune evasion repertoire of the parasitic mite and a potential target for therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031079 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0002872 | DOI Listing |
Sci Rep
January 2025
Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China.
Increasing evidence points toward an essential role for complement activation in the pathogenesis of diabetic kidney disease (DKD). However, the precise molecular mechanisms remain unclear, and the pathway predominantly contributing to complement activation in DKD is of particular interest. In this study, the glomerular proteome, especially the profiles of the complement proteins, was analyzed in kidney biopsies from 40 DKD patients and 10 normal controls using laser microdissection-assisted liquid chromatography-tandem mass spectrometry (LMD-LC-MS/MS).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Brown University, Providence, RI, USA.
Background: Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is an important regulator of immunity and, in the brain, is primarily secreted by activated astrocytes and heralds a neurotoxic inflammatory state. While it has been well known as a high-profile biomarker for Alzheimer's disease (AD) and inflammatory brain conditions (e.g.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117546, Singapore.
Norovirus (NoV) infection is a leading cause of gastroenteritis and poses global health threats, with increasing incidence reported in immunocompromised individuals, which is further exacerbated by the globalization of the food industry. Eumelanin has demonstrated its potential in antiviral treatments, but its role in preventing viral infections remains underexplored. Therefore, in this study, we investigated the antiviral properties and potential mechanisms of self-assembled eumelanin nanoparticles (EmNPs) against Tulane virus (TuV), a surrogate with a similar infection mechanism to NoVs.
View Article and Find Full Text PDFFront Immunol
January 2025
Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
Surfactant protein D (SP-D) is a C-type lectin that was originally discovered as a lung surfactant associated phospholipid recognising protein. It was originally shown to be of great importance in surfactant turnover and homeostasis in conjunction with another hydrophilic surfactant protein i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!