A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum. | LitMetric

Trypanothione is a unique and essential redox metabolite of trypanosomatid parasites, the biosynthetic pathway of which is regarded as a promising target for antiparasitic drugs. Synthesis of trypanothione occurs by the consecutive conjugation of two glutathione molecules to spermidine. Both reaction steps are catalyzed by trypanothione synthetase (TRYS), a molecule known to be essential in Trypanosoma brucei. However, other trypanosomatids (including some Leishmania species and Trypanosoma cruzi) potentially express one additional enzyme, glutathionylspermidine synthetase (GSPS), capable of driving the first step of trypanothione synthesis yielding glutathionylspermidine. Because this monothiol can substitute for trypanothione in some reactions, the possibility existed that TRYS was redundant in parasites harboring GSPS. To clarify this issue, the functional relevance of both GSPS and TRYS was investigated in Leishmania infantum (Li). Employing a gene-targeting approach, we generated a gsps(-/-) knockout line, which was viable and capable of replicating in both life cycle stages of the parasite, thus demonstrating the superfluous role of LiGSPS. In contrast, elimination of both LiTRYS alleles was not possible unless parasites were previously complemented with an episomal copy of the gene. Retention of extrachromosomal LiTRYS in the trys(-/-)/+TRYS line after several passages in culture further supported the essentiality of this gene for survival of L. infantum (including its clinically relevant stage), hence ruling out the hypothesis of functional complementation by LiGSPS. Chemical targeting of LiTRYS with a drug-like compound was shown to also lead to parasite death. Overall, this study disqualifies GSPS as a target for drug development campaigns and, by genetic and chemical evidence, validates TRYS as a chemotherapeutic target in a parasite endowed with GSPS and, thus, probably along the entire trypanosomatid lineage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.007DOI Listing

Publication Analysis

Top Keywords

genetic chemical
8
trypanothione synthetase
8
glutathionylspermidine synthetase
8
leishmania infantum
8
trypanothione
6
gsps
5
chemical analyses
4
analyses reveal
4
reveal trypanothione
4
synthetase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!